Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 910))

  • 1329 Accesses

Abstract

The fundamental concepts necessary to understand soft impact will be presented in this and the next chapter. First, definitions of unit, dimension, stress, and strain are introduced. Then, the basic ideas of scaling and dimensional analysis are briefly explained on the basis of fundamental continuum mechanics. After reviewing the elementary theory of the fluid drag force, a list of meaningful dimensionless numbers is provided. Finally, the concept of the similarity law, which is important in the design and analysis of the experimental system, is described. In the next chapter, constitutive laws of soft matter particularly for granular matter are intensively discussed. Because this and the next chapters concern fundamentals, those who already have a good understanding of continuum mechanics and granular matter do not need to read these chapters. Note that, however, many equations derived in these chapters will be used in the subsequent chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The word viscosity indicates dynamic viscosity . Kinematic viscosity is defined by ηρ. η defined in Eq. (2.17) is essentially the same as that introduced in Eq. (2.16).

  2. 2.

    This assumption is the extremely important to reach the reasonable scaling. If the energy released by explosion is mainly transmitted to the blast wave kinetic energy, these energies should be of the same order of magnitude. Therefore, Π 1 should have an order of magnitude of 100.

  3. 3.

    This notation is used in the remainder of this book. The symbol \(\simeq \) represents an approximate equality, and the symbol \(\propto \) denotes the proportional relation of different dimensional quantities.

  4. 4.

    The derivation of this form is not so simple. Some tips for the vector analysis in spherical coordinate and a fundamental knowledge of fluid mechanics are necessary for the calculation. While the details of the derivation are skipped here, an outline is briefly provided below. For the Stokes dynamics , the solution called Stokeslet which satisfies \(\nabla p =\eta \nabla ^{2}\boldsymbol{u}\) and Eq. (2.26) is useful. In spherical coordinates (r, \(\theta\), ϕ), the stream function \(\varphi\) of the Stokeslet obeys the equation, \(\mathcal{E}^{2}\varphi = 0\), where \(\mathcal{E} = (\partial ^{2}/\partial r^{2}) + (\sin \theta /r^{2})(\partial /\partial \theta )[(1/\sin \theta )(\partial /\partial \theta )]\). Here \(\theta\) corresponds to the zenith angle from the flow (z) axis. The stream function \(\varphi\) is related to the velocity components u r and \(u_{\theta }\) as \(u_{r} = (1/r^{2}\sin \theta )(\partial \varphi /\partial \theta )\) and \(u_{\theta } = (-1/r\sin \theta )(\partial \varphi /\partial r)\). Considering the boundary conditions \(\varphi (r = R_{i}) = 0\), \((\partial \varphi /\partial r)(r = R_{i}) = 0\) (no slip on the surface of the spherical object in radius R i ) and \(\varphi (r \rightarrow \infty ) = (1/2)vr^{2}\sin ^{2}\theta\) (uniform flow of velocity v along z axis), the solution for \(\mathcal{E}^{2}\varphi = 0\) is obtained by assuming the variable separation form \(\varphi = f(r)\sin ^{2}\theta\) as \(\varphi = (1/2 - 3R_{i}/4r + R_{i}^{3}/4r^{3})vr^{2}\sin ^{2}\theta\). Then, the velocity components are written as \(u_{r} = (1 - 3R_{i}/2r + R_{i}^{3}/2r^{3})v\cos \theta\) and \(u_{\theta } = -(1 - 3R_{i}/4r - R_{i}^{3}/4r^{3})v\sin \theta\). The shear-originated drag force F s is computed by \(F_{s} =\int _{s}\eta \dot{\gamma }_{r\theta }\sin \theta ds\), where s is the small surface unit of the object and \(\dot{\gamma }_{r\theta } = r(\partial /\partial r)(u_{\theta }/r) + (1/r)(\partial u_{r}/\partial \theta )\) is the shear strain rate. The normal drag force F n can be computed by \(\int _{s}2\eta (\partial u_{r}/\partial r)\cos \theta ds\) at r = R i . Finally, \(F_{\eta }\) can be computed from \(F_{\eta } = F_{s} + F_{n}\) and D i  = 2R i .

  5. 5.

    Using usual notations of representative quantities (v = U, D i  = l, and ρ t  = ρ), Eq. (2.71) becomes \(C_{D} \sim F_{D}/\rho U^{2}l^{2}\) by omitting a numerical factor.

  6. 6.

    All other drag force forms used in this section (\(F_{\eta }\), F i , and F E ) are also written using their absolute values. Hence the motion’s direction is considered as a positive direction (Fig. 2.7).

  7. 7.

    This form is understandable by considering a centrifugal acceleration.

  8. 8.

    This velocity can roughly be estimated by the impulse balance, \(m_{i}gT_{\mathrm{step}} = 0.5\rho _{t}v^{2}\pi R_{i}^{2}l_{\mathrm{leg}}/v\).

  9. 9.

    This equation dimensionally represents a simple relation, \(m_{m}\langle u_{t}\rangle ^{2} \sim k_{B}T\). More precisely, this relation can be computed by \(\langle u_{t}\rangle = (m_{m}/2\pi k_{B}T)^{2/3}\int _{0}^{\infty }u_{t}\exp (-m_{m}u_{t}^{2}/2k_{B}T)4\pi u_{t}^{2}du_{t}\).

  10. 10.

    F r is sometimes defined as \(F_{r} = U/\sqrt{gl}\).

  11. 11.

    This form comes from the stress balance, \(\rho g\lambda _{c} =\gamma _{c}/\lambda _{c}\).

  12. 12.

    This relation can also be derived by the simple linear approximation of the energy balance per infinitesimal radius variation of the bubble dR b , \(\varDelta p4\pi R_{b}^{2}dR_{b} \simeq 4\pi [(R_{b} + dR_{b})^{2} - R_{b}^{2}]\gamma _{c}\).

  13. 13.

    The same direction of acceleration vectors in the model and prototype is surely assumed. This similarity is also assumed later in Eqs. (2.122) and (2.124).

References

  1. J.C. Maxwell, Proc. Lond. Math. Soc. 3, 257 (1871)

    Google Scholar 

  2. G.I. Barenblatt, Scaling (Cambridge University Press, Cambridge, 2003)

    Book  MATH  Google Scholar 

  3. Y. Fung, A First Course in Continuum Mechanics, 3rd edn. (Prentice Hall, New Jersey, 1993)

    Google Scholar 

  4. P.K. Kundu, I.M. Cohen, D.R. Dowling, Fluid Mechanics, 5th edn. (Academic, Waltham, 2011)

    Google Scholar 

  5. P. Oswald, Rheophysics: The Deformation and Flow of Matter (Cambridge University Press, Cambridge, 2009)

    Google Scholar 

  6. K.K. Rao, P.R. Nott, An Introduction to Granular Flow (Cambridge University Press, Cambridge, 2008)

    Book  Google Scholar 

  7. E. Buckingham, Phys. Rev. 4, 345 (1914)

    Article  ADS  Google Scholar 

  8. E. Buckingham, Nature 96, 396 (1915)

    Article  MATH  ADS  Google Scholar 

  9. D. Bolster, R.E. Hershberger, R.J. Donnelly, Phys. Today 64, 42 (2011)

    Article  Google Scholar 

  10. J.C. Gibbings, Dimensional Analysis (Springer, London, 2011)

    Book  MATH  Google Scholar 

  11. A.A. Sonin, PNAS 101, 8525 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. G. Taylor, Proc. R. Soc. A 201, 159 (1950)

    Article  MATH  ADS  Google Scholar 

  13. G. Taylor, Proc. R. Soc. A 201, 175 (1950)

    Article  ADS  Google Scholar 

  14. K.L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1985)

    Book  MATH  Google Scholar 

  15. K.L. Johnson, K. Kendall, A.D. Roberts, Proc. R. Soc. A 324, 301 (1971)

    Article  ADS  Google Scholar 

  16. M.K. Chaudhury, G.M. Whitesides, Langmuir 7, 1013 (1991)

    Article  Google Scholar 

  17. P. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, 1979)

    Google Scholar 

  18. P. de Gennes, F. Brochard-Wyart, D. Quéré, Capillarity and Wetting Phenomena – Drops, Bubbles, Pearls, Waves (Springer, New York, 2004)

    Book  MATH  Google Scholar 

  19. L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon, London, 1960)

    Google Scholar 

  20. A. May, J.C. Woodhull, J. Appl. Phys. 19, 1109 (1948)

    Article  ADS  Google Scholar 

  21. D. Gilbarg, R.A. Anderson, J. Appl. Phys. 19, 127 (1948)

    Article  ADS  Google Scholar 

  22. T.T. Truscott, A.H. Techet, J. Fluid Mech. 625, 135 (2009)

    Article  MATH  ADS  Google Scholar 

  23. J.W. Glasheen, T.A. McMahon, Phys. Fluids 8, 2078 (1996)

    Article  ADS  Google Scholar 

  24. J.W. Glasheen, T.A. McMahon, Nature 380, 340 (1996)

    Article  ADS  Google Scholar 

  25. A. May, J.C. Woodhull, J. Appl. Phys. 21, 1285 (1950)

    Article  ADS  Google Scholar 

  26. W.G.V. Rosser, An Introduction to Statistical Physics (Wiley, New York, 1982)

    Google Scholar 

  27. P.S. Epstein, Phys. Rev. 23, 710 (1924)

    Article  ADS  Google Scholar 

  28. W.A. Allen, E.B. Mayfield, H.L. Morrison, J. Appl. Phys. 28, 370 (1957)

    Article  MATH  ADS  Google Scholar 

  29. W.A. Allen, E.B. Mayfield, H.L. Morrison, J. Appl. Phys. 28, 1331 (1957)

    Article  ADS  Google Scholar 

  30. R.A. Bagnold, Proc. R. Soc. A 225, 49 (1954)

    Article  ADS  Google Scholar 

  31. C.S. Campbell, M.L. Hunt, R. Zenit, C.E. Brennen, J. Fluid Mech. 452, 1 (2002)

    MATH  ADS  Google Scholar 

  32. GDR MiDi, Eur. Phys. J. E 14, 341 (2004)

    Article  Google Scholar 

  33. F. da Cruz, S. Emam, M. Prochnow, J.N. Roux, F.m.c. Chevoir, Phys. Rev. E 72, 021309 (2005)

    Google Scholar 

  34. S.B. Savage, K. Hutter, J. Fluid Mech. 199, 177 (1989)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. C. Ancey, P. Coussot, P. Evesque, J. Rheol. 43, 1673 (1999)

    Article  ADS  Google Scholar 

  36. M.K. Hubbert, Bull. Geol. Soc. Am. 48, 1459 (1937)

    Article  Google Scholar 

  37. L.L. Nettleton, Bull. Geol. Soc. Am. 18, 1175 (1934)

    Google Scholar 

  38. D.C. Barton, Bull. Geol. Soc. Am. 17, 1025 (1933)

    Google Scholar 

  39. M.K. Hubbert, Bull. Geol. Soc. Am. 62, 356 (1951)

    Google Scholar 

  40. P. Cobbold, L. Castro, Tectonophys. 301, 1 (1999)

    Article  Google Scholar 

  41. Y. Yamada, Y. Yamashita, Y. Yamamoto, Tectonophys. 484, 156 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Katsuragi, H. (2016). Scaling and Dimensional Analysis. In: Physics of Soft Impact and Cratering. Lecture Notes in Physics, vol 910. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55648-0_2

Download citation

Publish with us

Policies and ethics