Skip to main content

Abstract

Commercial anti-tubulin fungicides belong to three structural classes: benzimidazoles, N-phenylcarbamates, and benzamides. These compounds inhibit microtubule assembly by binding to β-tubulin. Benzimidazoles are used primarily to control ascomycete pathogens and have encountered serious resistance problems and loss of efficacy in the field. The N-phenylcarbamate diethofencarb displays negatively correlated cross-resistance to benzimidazoles and was introduced to control benzimidazole-resistant strains of Botrytis and other fungi. However, this strategy led to selection of strains resistant to both chemistries. Resistance to benzimidazoles and N-phenylcarbamates in lab or field mutants is due primarily to mutations in β-tubulin, and positive or negative cross-resistance between these classes of compound is frequently observed depending on the particular mutation and compounds. The benzamide class of fungicides, which includes zoxamide and ethaboxam, is only used commercially to control oomycete diseases, and there are no reports to date of resistance in the field. Cross-resistance between the benzamide zoxamide, benzimidazoles, and diethofencarb in β-tubulin mutants from Ascomycetes and competitive binding assay data show that all three structural classes bind to the “colchicine” site on β-tubulin, a region targeted also by many experimental anticancer and herbicidal compounds. Recent structural studies of β-tubulin are providing new insights into binding of anti-tubulin fungicides and resistance mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguayo-Ortiz R, Mendez-Lucio O, Medina-Franco JL, Castillo R, Yepez-Mulia L, Hernandez-Luis F, Hernandez-Campos A (2013a) Towards the identification of the binding site of benzimidazoles to β-tubulin of Trichinella spiralis: insights from computational and experimental data. J Mol Graph Model 41:12–19

    Article  CAS  PubMed  Google Scholar 

  • Aguayo-Ortiz R, Mendez-Lucio O, Romo-Mancillas A, Castillo R, Yepez-Mulia L, Medina-Franco JL, Hernandez-Campos A (2013b) Molecular basis for benzimidazole resistance from a novel β-tubulin binding site model. J Mol Graph Model 45:26–37

    Article  CAS  PubMed  Google Scholar 

  • Albertini C, Gredt M, Leroux P (1999) Mutations of the β-tubulin gene associated with different phenotypes of benzimidazole resistance in the cereal eyespot fungi Tapesia yallundae and Tapesia acuformis. Pestic Biochem Physiol 64:17–31

    Article  CAS  Google Scholar 

  • Andrade AC, Del Sorbo G, Van Nistelrooy JGM, De Waard MA (2000) The ABC transporter AtrB from Aspergillus nidulans mediates resistance to all major classes of fungicides and some natural toxic compounds. Microbiology 146:1987–1997

    Article  CAS  PubMed  Google Scholar 

  • Bai RL, Duanmu C, Hamel E (1989) Mechanism of action of the antimitotic drug 2,4-dichlorobenzylthiocyanate. Biochim Biophys Acta 994:12–20

    Article  CAS  PubMed  Google Scholar 

  • Bai RL, Covell DG, Pei XF, Ewell JB, Nguyen NY, Brossi A, Hamel E (2000) Mapping the binding site of colchicinoids on β-tubulin: 2-chloroacetyl-2-demethylthiocolchicine covalently reacts predominantly with cysteine 239 and secondarily with cysteine 354. J Biol Chem 275:40443–40452

    Article  CAS  PubMed  Google Scholar 

  • Barbier P, Dorleans A, Devred F, Sanz L, Allegro D, Alfonso C, Knossow M, Peyrot V, Andreu JM (2010) Stathmin and interfacial microtubule inhibitors recognize a naturally curved conformation of tubulin dimers. J Biol Chem 285:31672–31681

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Buhr TL, Dickman MB (1994) Isolation, characterization, and expression of a second beta-tubulin-encoding gene from Colletotrichum gloeosporioides f. sp. aeschynomene. Appl Environ Microbiol 60:4155–4159

    PubMed Central  CAS  PubMed  Google Scholar 

  • Carter HE, Cools HJ, West JS, Shaw MW, Fraaije BA (2013) Detection and molecular characterisation of Pyrenopeziza brassicae isolates resistant to methyl benzimidazole carbamates. Pest Manag Sci 69:1040–1048

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Yu J, Bi C, Zhang Y, Xu J, Wang J, Zhou M (2009) Mutations in a β-tubulin confer resistance of Gibberella zeae to benzimidazole fungicides. Phytopathology 99:1403–1411

    Article  CAS  PubMed  Google Scholar 

  • Chung W, Ishii H, Nishimura K, Fukaya M, Yano K, Kajitani Y (2006) Fungicide sensitivity and phylogenetic relationship of anthracnose fungi isolated from various fruit crops in Japan. Plant Dis 90:506–512

    Article  CAS  Google Scholar 

  • Davidse LC (1982) Benzimidazole compounds: selectivity and resistance. In: Dekker J, Georgopoulos SG (eds) Fungicide resistance in crop protection. Centre for Agricultural Publishing and Documentation, Wageningen, pp 60–70

    Google Scholar 

  • Davidse LC (1986) Benzimidazole fungicides: mechanism of action and biological impact. Annu Rev Phytopathol 24:43–65

    Article  CAS  Google Scholar 

  • Davidse LC, Flach W (1978) Interaction of thiabendazole with fungal tubulin. Biochim Biophys Acta 543:82–90

    Article  CAS  PubMed  Google Scholar 

  • Davidse LC, Ishii H (1995) Biochemical and molecular aspects of the mechanism of action of benzimidazoles, N-phenylcarbamates and N-phenylformamidoximes and the mechanism of resistance to these compounds in fungi. In: Lyr H (ed) Modern selective fungicides – properties, applications, mechanisms of action, 2nd edn. Gustav Fischer Verlag, Jena, pp 305–322

    Google Scholar 

  • Delp CJ (1995) Benzimidazole and related fungicides. In: Lyr H (ed) Modern selective fungicides – properties, applications, mechanisms of action, 2nd edn. Gustav Fischer Verlag, Jena, pp 291–303

    Google Scholar 

  • Deng W, Mei X, Yang M, Chen L, Bi Y, Cai M, Wang H, Puqian E, He X, Zhu S (2012) Correlation between sensitivity to zoxamide and the mutation of β-tubulin amino acid of Colletotrichum gloeosporioides and two Phytophthora spp. isolates. Nongyaoxue Xuebao 14:143–150

    CAS  Google Scholar 

  • Dorleans A, Gigant B, Ravelli RBG, Mailliet P, Mikol V, Knossow M (2009) Variations in the colchicine-binding domain provide insight into the structural switch of tubulin. Proc Natl Acad Sci U S A 106:13775–13779

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eacott CJP (1986) Assessment of the risk of resistance to benzamide fungicides in Phytophthora infestans. Dissertation, University of London

    Google Scholar 

  • Egan AR, Michelotti EL, Young DH, Wilson WJ, Mattioda H (1998) RH-7281: a novel fungicide for control of downy mildew and late blight. In: Proceedings of Brighton crop protection conference – pests and diseases, The British Crop Protection Council, Farnham, pp 335–342

    Google Scholar 

  • Fujimura M, Kamakura T, Yamaguchi I (1992a) Action mechanism of diethofencarb to a benzimidazole-resistant mutant in Neurospora crassa. J Pestic Sci 17:237–242

    Article  Google Scholar 

  • Fujimura M, Kamakura T, Inoue H, Inoue S, Yamaguchi I (1992b) Sensitivity of Neurospora crassa to benzimidazoles and N-phenylcarbamates: effect of amino acid substitutions at position 198 in β-tubulin. Pestic Biochem Physiol 44:165–173

    Article  CAS  Google Scholar 

  • Fujimura M, Oeda K, Inoue H, Kato T (1992c) A single amino-acid substitution in the beta-tubulin gene of Neurospora confers both carbendazim resistance and diethofencarb sensitivity. Curr Genet 21:399–404

    Article  CAS  PubMed  Google Scholar 

  • Fungicide Resistance Action Committee (2004) Benzimidazoles. http://www.frac.info/index.htm. Accessed 2 June 2014

  • Gigant B, Curmi PA, Martin-Barbey C, Charbaut E, Lachkar S, Lebeau L, Siavoshian S, Sobel A, Knossow M (2000) The 4 Å x-ray structure of a tubulin: stathmin-like domain complex. Cell 102:809–816

    Article  CAS  PubMed  Google Scholar 

  • Heaney SP, Shephard MC, Crowley PJ, Shearing SJ (1988) ICIA0001: a novel benzamide fungicide. In: Proceedings of Brighton crop protection conference -– pests and diseases, The British Crop Protection Council, Thorntorn Heath, pp 551–558

    Google Scholar 

  • Hearn BR, Shaw SJ, Myles DC (2006) Microtubule targeting agents. In: Taylor JB, Triggle DJ (eds) Comprehensive medicinal chemistry II, vol 7. Elsevier, New York, pp 81–110

    Google Scholar 

  • Ishii H (1992) Target sites of tubulin-binding fungicides. In: Köller W (ed) Target sites of fungicide action. CRC Press, Boca Raton, pp 43–52

    Google Scholar 

  • Ishii H, Takeda H (1989) Differential binding of a N-phenylformamidoxime compound in cell free extracts of benzimidazole-resistant and -sensitive isolates of Venturia nashicola, Botrytis cinerea and Gibberella fujikuroi. Neth J Plant Pathol 95(Suppl 1):99–108

    Article  CAS  Google Scholar 

  • Jung MK, Oakley BR (1990) Identification of an amino acid substitution in the benA, beta-tubulin gene of Aspergillus nidulans that confers thiabendazole resistance and benomyl supersensitivity. Cell Motil Cytoskel 17:87–94

    Article  CAS  Google Scholar 

  • Jung MK, Wilder IB, Oakley BR (1992) Amino acid alterations in the benA (beta-tubulin) gene of Aspergillus nidulans that confer benomyl resistance. Cell Motil Cytoskel 22:170–174

    Article  CAS  Google Scholar 

  • Kim DS, Lee YS, Chun SJ, Choi WB, Lee SW, Kim GT, Kang KG, Joe GH, Cho JH (2002) Ethaboxam: a new Oomycetes fungicide. In: Proceedings of Brighton crop protection conference – pests and diseases, The British Crop Protection Council, Farnham, pp 377–382

    Google Scholar 

  • Koenraadt H, Jones AL (1993) Resistance to benomyl conferred by mutations in codon 198 or 200 of the beta-tubulin gene of Neurospora crassa and sensitivity to diethofencarb conferred by codon 198. Phytopathology 83:850–854

    Article  CAS  Google Scholar 

  • Koenraadt H, Somerville SC, Jones AL (1992) Characterizations of mutations in the beta-tubulin gene of benomyl-resistant field strains of Venturia inaequalis and other plant pathogenic fungi. Phytopathology 82:1348–1354

    Article  Google Scholar 

  • Lamberth C, Dumeunier R, Trah S, Wendeborn S, Godwin J, Schneiter P, Corran A (2013) Synthesis and fungicidal activity of tubulin polymerisation promoters. Part 3: imidazoles. Bioorg Med Chem 21:127–134

    Article  CAS  PubMed  Google Scholar 

  • Leroux P (1995) Progress and problems in the control of Botrytis cinerea in grapevine. Pesticide Outlook 6:20–24

    Google Scholar 

  • Leroux P, Gredt M (1979) Phenomena of negative cross resistance in Botrytis cinerea Pers. between benzimidazole fungicides and carbamate herbicides. Phytiatr Phytopharm 28:79–86

    CAS  Google Scholar 

  • Leroux P, Gredt M, Walker AS, Moinard JM, Caron D (2005) Resistance of the wheat leaf blotch pathogen Septoria tritici to fungicides in France. In: Dehne HW, Gisi U, Kuck KH, Russell PE, Lyr H (eds) Modern fungicides and antifungal compounds IV. The British Crop Protection Council, Alton, pp 115–124

    Google Scholar 

  • Ma Z, Michailides TJ (2005) Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop Prot 24:853–863

    Article  CAS  Google Scholar 

  • Malandrakis A, Markoglou A, Ziogas B (2011) Molecular characterization of benzimidazole-resistant B. cinerea field isolates with reduced or enhanced sensitivity to zoxamide and diethofencarb. Pestic Biochem Physiol 99:118–124

    Article  CAS  Google Scholar 

  • Malandrakis AA, Markoglou AN, Ziogas BN (2012) PCR-RFLP detection of the E198A mutation conferring resistance to benzimidazoles in field isolates of Monilinia laxa from Greece. Crop Prot 39:11–17

    Article  CAS  Google Scholar 

  • Martinez C, Levesque CA, Belanger RR, Tweddell RJ (2005) Evaluation of fungicides for the control of carrot cavity spot. Pest Manag Sci 61:767–771

    Article  CAS  PubMed  Google Scholar 

  • Maymon M, Zveibil A, Pivonia S, Minz D, Freeman S (2006) Identification and characterization of benomyl-resistant and -sensitive populations of Colletotrichum gloeosporioides from statice (Limonium spp.). Phytopathology 96:542–548

    Article  CAS  PubMed  Google Scholar 

  • Nakata A, Sano S, Hashimoto S, Hayakawa K, Nishikawa H, Yasuda Y (1987) Negatively correlated cross-resistance to N-phenylformamidoximes in benzimidazole-resistant phytopathogenic fungi. Annu Phytopathol Soc Jpn 53:659–662

    Article  CAS  Google Scholar 

  • Nakaune R, Nakano M (2007) Benomyl resistance of Colletotrichum acutatum is caused by enhanced expression of β-tubulin 1 gene regulated by putative leucine zipper protein CaBEN1. Fungal Genet Biol 44:1324

    Article  CAS  PubMed  Google Scholar 

  • Prota AE, Bargsten K, Diaz JF, Marsh M, Cuevas C, Liniger M, Neuhaus C, Andreu JM, Altmann K, Steinmetz MO (2014) A new tubulin-binding site and pharmacophore for microtubule-destabilizing anticancer drugs. Proc Natl Acad Sci U S A 111:13817–13821

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ravelli RBG, Gigant B, Curmi PA, Jourdain I, Lachkar S, Sobel A, Knossow M (2004) Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature 428:198–202

    Article  CAS  PubMed  Google Scholar 

  • Shan B, Medina JC, Santha E, Frankmoelle WP, Chou TC, Learned RM, Narbut MR, Stott D, Pengguang W, Jaen JC, Rosen T, Timmermans PBMWM, Beckman H (1999) Selective, covalent modification of β-tubulin residue Cys-239 by T138067, an antitumor agent with in vivo efficacy against multidrug-resistant tumors. Proc Natl Acad Sci U S A 96:5686–5691

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sholberg PL, Harlton C, Haag P, Levesque CA, O’Gorman D, Seifert K (2005) Benzimidazole and diphenylamine sensitivity and identity of Penicillium spp. that cause postharvest blue mold of apples using β-tubulin gene sequences. Postharv Biol Technol 36:41–49

    Article  CAS  Google Scholar 

  • Takahashi J, Nakamura S, Noguchi H, Kato T, Kamoshita K (1988) Fungicidal activity of N-phenylcarbamates against benzimidazole resistant fungi. J Pestic Sci 13:63–69

    Article  CAS  Google Scholar 

  • Uchida M, Roberson RW, Chun SJ, Kim DS (2005) In vivo effects of the fungicide ethaboxam on microtubule integrity in Phytophthora infestans. Pest Manag Sci 61:787–792

    Article  CAS  PubMed  Google Scholar 

  • Vaughn KC (2000) Anticytoskeletal herbicides. In: Nick P (ed) Plant microtubules. Springer, Berlin/Heidelberg, pp 193–205

    Chapter  Google Scholar 

  • Walker AS, Micoud A, Rémuson F, Grosman J, Gredt M, Leroux P (2013) French vineyards provide information that opens ways for effective resistance management of Botrytis cinerea (grey mould). Pest Manag Sci 69:667–678

    Article  CAS  PubMed  Google Scholar 

  • Wilson L, Jordan MA (1994) Pharmacological probes of microtubule function. In: Hyams JS, Lloyd CW (eds) Microtubules. Wiley-Liss, New York, pp 59–83

    Google Scholar 

  • Yang B, Cui X, Lu X, Cai M, Liu X, Hao JJ (2011) Baseline sensitivity of natural population and resistance of mutants in Phytophthora capsici to zoxamide. Phytopathology 101:1104–1111

    Article  Google Scholar 

  • Yarden O, Katan T (1993) Mutations leading to substitutions at amino acids 198 and 200 of beta-tubulin that correlate with benomyl-resistance phenotypes of field strains of Botrytis cinerea. Phytopathology 83:1478–1483

    Article  CAS  Google Scholar 

  • Young DH (1991) Effects of zarilamide on microtubules and nuclear division in Phytophthora capsici and tobacco suspension-cultured cells. Pestic Biochem Physiol 40:149–161

    Article  CAS  Google Scholar 

  • Young DH (2012) Zoxamide: an antitubulin fungicide for the control of Oomycete pathogens. In: Kramer W, Schirmer U, Jeschke P, Witschel M (eds) Modern crop protection compounds, vol 2. Wiley-VCH, Weinheim, pp 739–748

    Chapter  Google Scholar 

  • Young DH, Lewandowski VT (2000) Covalent binding of the benzamide RH-4032 to tubulin in suspension-cultured tobacco cells and its application in a cell-based competitive-binding assay. Plant Physiol 124:115–124

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Young DH, Slawecki RA (2001) Mode of action of zoxamide (RH-7281), a new Oomycete fungicide. Pestic Biochem Physiol 69:100–111

    Article  CAS  Google Scholar 

  • Young DH, Slawecki RA (2005) Cross resistance relationships between zoxamide, carbendazim and diethofencarb in field isolates of Botrytis cinerea and other fungi. In: Dehne HW, Gisi U, Kuck KH, Russell PE, Lyr H (eds) Modern fungicides and antifungal compounds IV. The British Crop Production Council, Alton, pp 125–131

    Google Scholar 

  • Young DH, Michelotti EL, Swindell CS, Krauss NE (1992) Antifungal properties of taxol and various analogs. Experientia 48:882–885

    Article  CAS  PubMed  Google Scholar 

  • Young DH, Spiewak SL, Slawecki RA (2001) Laboratory studies to assess the risk of development of resistance to zoxamide. Pest Manag Sci 57:1081–1087

    Article  CAS  PubMed  Google Scholar 

  • Young DH, Rubio FM, Danis PO (2006) A radioligand binding assay for antitubulin activity in tumor cells. J Biomol Screen 11:82–89

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Ayral-Kaloustian S, Nguyen T, Afragola J, Hernandez R, Lucas J, Gibbons J, Beyer C (2007) Synthesis and SAR of [1,2,4]triazolo[1,5-a]pyrimidines, a class of anticancer agents with a unique mechanism of tubulin inhibition. J Med Chem 50:319–327

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David H. Young .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Young, D.H. (2015). Anti-tubulin Agents. In: Ishii, H., Hollomon, D. (eds) Fungicide Resistance in Plant Pathogens. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55642-8_7

Download citation

Publish with us

Policies and ethics