Skip to main content

Indeterminacy in Open Economies

  • Chapter
  • First Online:
Growth and Business Cycles with Equilibrium Indeterminacy

Part of the book series: Advances in Japanese Business and Economics ((AJBE,volume 13))

  • 438 Accesses

Abstract

In the previous chapters, we restrict our attention to closed-economy models. This chapter examines equilibrium indeterminacy in open economies. The central concern of this chapter is to explore how international transactions affect the dynamic behaviors of macroeconomies. In particular, we focus on the difference in the indeterminacy conditions between open economies and their closed economy counterparts. We first discuss small open economies and then explore the world economy consisting of two large countries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This specification of production technology is first introduced by Benhabib and Nishimura (1998) who demonstrate that equilibrium intermediacy may hold even in the absence of social increasing returns. Benhabib et al. (2000), Meng (2003), Meng and Velasco (2003, 2004), Mino (2001), and Nishimura and Shimomura (2002a,b) use the same production functions.

  2. 2.

    See Footnote 11 on this restriction.

  3. 3.

    Our discussion depends on this assumption. If at least one country completely specializes, the dynamic system of the world economy becomes different from that examined in this section. However, provided that both countries have identical taste and technology, the steady state equilibrium of the world economy is inside the diversification cone where both countries produce both goods. Therefore, our assumption is justified as long as we focus on the local dynamics of the world economy around the steady state equilibrium. To analyze the global behavior of the model, we need to treat the model out of the diversification cone. Atkeson and Kehoe (2000) explored the dynamic behavior of a small country that specializes in producing one of the two goods. Caliendo (2010) presents a detailed analysis of the dynamic behavior of a 2 × 2 × 2 model outside the diversification cone.

  4. 4.

    The precise expression of \(1/\bar{\sigma }\) is

    $$\displaystyle{ \frac{1} {\hat{\sigma }} = \frac{(1 -\alpha _{1})a_{2}b_{1}(\rho +\delta ) +\alpha _{1}a_{1}\left [\rho b_{2} +\delta b_{1}a_{2} + (1 - a_{1})b_{2}\delta \right ]} {\left (a_{2}b_{1} - a_{1}b_{2}\right )\left (\alpha _{1} -\alpha _{2}\right )\left [\rho +\delta (1 - a_{1})\right ]}. }$$
  5. 5.

    This conclusion depends on the functional forms of production and utility functions we use as well as on the fact that we restrict our attention to the model behavior near the steady state. As for more general analyses on income and wealth distribution among the countries in the Heckscher-Ohlin setting, see Atkeson and Kehoe (2000) and Bajona and Kehoe (2010). Atkeson and Kehoe treated a small-country model, while Bajona and Kehoe (2010) explored a two-country model.

  6. 6.

    In the small-country setting, the trade structure assumed here is a type of dependent economy model discussed in open-economy macroeconomics literature. Turnovsky and Sen (1995) treated a small-open economy model with non-tradable capital and Turnovsky (1997, Chapter 7) studied a neoclassical two-country, two-sector model in which capital goods are not traded. Mino (2008) also examined a similar two-country model with external increasing returns. See also Chapter 5 for a brief literature review.

  7. 7.

    Since \(\widetilde{p} = 1/p\), the precise expression of \(\,\widetilde{r}\,\left (1/\,\widetilde{p}\,\right )\) is \(\widetilde{r}\left (1\,\widetilde{p}\,\right ) = r/p = pa_{1}A_{1}k_{1}\left ( \frac{1} {\widetilde{p}^{}}\right )^{\alpha _{1}-1}\).

  8. 8.

    The Rybczynski effect of a change in factor endowment depends on the factor-intensity ranking from the private perspective, while the Stolper-Samuelson effect of a price change depends on the factor-intensity ranking from the social perspective. Therefore, if the private and social factor intensity rankings are the same, we obtain the standard results and, hence, equilibrium indeterminacy will not arise.

  9. 9.

    See, for example, Ghiglino and Olszak-Duquenne (2005).

  10. 10.

    In the existing literature, Antras and Caballero (2009) introduced financial frictions into the Heckscher-Ohlin mode. Ono and Shibata (2010) and Jin (2012) introduced adjustment costs of investment into 2 × 2 × 2 models.

  11. 11.

    The structure of the base model is close to the two-country model examined by Turnovsky (1997; Chapter 7). Since Turnovsky (1997) did not assume the presence of external increasing returns, indeterminacy of equilibrium is not the issue in his argument. Baxter and Crucini (1995) used a similar model in their study on international real business cycles.

  12. 12.

    This assumption is introduced only for notational simplicity.

  13. 13.

    Denote the steady state values of v i as v i ∗ and v i ∗∗ (v i ∗ < v i ∗∗). It is seen that \(d\dot{v}_{i}/dv_{i} <0\) for v i = v i ∗ and \(d\dot{v}_{i}/dv_{i}> 0\) for v i = v i ∗∗. Since v i is not a predetermined variable, indeterminacy emerges around v i = v i ∗.

  14. 14.

    When the dynamic system of \(\left (K,K^{{\ast}},q,q^{{\ast}}\right )\) satisfies equilibrium determinacy under a given level of \(\bar{m}\), then the equilibrium paths of K and K ∗ are uniquely determined under given levels of K 0 and K 0 ∗. Therefore, the equilibrium path of (6.55) is also uniquely determined. Conversely, if the dynamic system of \(\left (K,K^{{\ast}},q,q^{{\ast}}\right )\) exhibits local indeterminacy, the equilibrium paths of K and K ∗ cannot be uniquely determined by selecting K 0 and K 0 ∗. This means that (6.55) also holds equilibrium indeterminacy.

Bibliography

  • Abel, A. (1990). Asset prices under habit formation and catching up with the Joneses. American Economic Review, 80, 38–42.

    Google Scholar 

  • Aghion, P., & Howitt, P. (1992). A model of growth through creative destruction. Econometrica, 60, 323–351.

    Article  Google Scholar 

  • Aiyagari, R. (1995). The econometrics of iindeterminacy: An applied study: A comment. Carnegie-Rochester Conference Series on Public Policy, 43, 273–284.

    Article  Google Scholar 

  • Akao, K., Kamihigashi, T. & Nihimura, K. (2011). Monotonicity and continuity of the critical capital stock in the Dechert–Nishimura model. Journal of Mathematical Economics, 47, 677–682.

    Article  Google Scholar 

  • Alonso-Carrera, J., Caballe, J., & Raurich, X. (2008). Can consumption spillovers be a source of equilibrium indeterminacy? Journal of Economic Dynamics and Control, 32, 2883–2902.

    Article  Google Scholar 

  • Altug, S. (2009). Business cycles: Facts, fallacy and fantasy. Singapore: World Scientific.

    Book  Google Scholar 

  • Amano, D., & Itaya, J. (2013). Taxation in the two-sector neoclassical growth model with sector-specific externalities and endogenous labor supply. Japanese Economic Review, 64, 248–275.

    Article  Google Scholar 

  • Amano, D., Itaya, J., & Mino, K. (2008). Tax incidence in dynamic economies with externalities and endogenous labor supply. In T. Kamihigashi & L. Zhao (Eds.), International trade and economic growth: Essays in memory of Koji Shimomura (pp. 361–382). Springer.

    Google Scholar 

  • Anagnostopoulos, A., & Giannitsarou, C. (2013). Indeterminacy and period length under balanced budget rules. Macroeconomic Dynamics, 19, 898–919.

    Article  Google Scholar 

  • Angeletos, G.-M., & La’O, J. (2013). Sentiments. Econometrica, 81, 739–779.

    Article  Google Scholar 

  • Antoci, A., Galeotti, M., & Russu, P. (2014). Global analysis and indeterminacy in a two-sector growth model with human capital. International Journal of Economic Theory, 10, 313–338.

    Article  Google Scholar 

  • Antras, P., & Caballero, R. (2009). Trade and capital flows: A financial frictions perspective. Journal of Political Economy, 117, 701–744.

    Article  Google Scholar 

  • Atkeson, A., & Kehoe, P. (2000). Paths of development for early- and late-bloomers in a dynamic Heckscher-Ohlin model (Staff Report 256). Federal Reserve Bank of Minneapolis.

    Google Scholar 

  • Azariadis, C. (1981). Self-fulfilling prophecies. Journal of Economic Theory, 25, 380–396.

    Article  Google Scholar 

  • Azariadis, C., & Drazen, A. (1990). Threshold externalities in economic development. Quarterly Journal of Economics, 105, 501–526.

    Article  Google Scholar 

  • Azariadis, C., & Guesnerie, R. (1986). Sunspots and cycles. Review of Economic Studies, 53, 725–736.

    Article  Google Scholar 

  • Bajona, C., & Kehoe, T. (2010) Trade, growth, and convergence in a dynamic Heckscher-Ohlin model. Review of Economic Dynamics, 13, 487–513.

    Article  Google Scholar 

  • Bambi, M., & Venditti, A. (2016). Time-varying consumption tax, productive government spending, and aggregate instability (Discussion Papers 16/01). Department of Economics, University of York.

    Google Scholar 

  • Basu, S., & Fernald, J. (1997). Returns to scale in U.S. production: Estimates and implications. Journal of Political Economy, 105, 249–283.

    Article  Google Scholar 

  • Baxter, M., & Crucini, M. (1995). Business cycles and the asset structure of foreign trade. International Economic Review, 36, 821–854.

    Article  Google Scholar 

  • Beaudry, P., & Portier, F. (2004). An exploration into Pigou’s theory of cycles. Journal of Monetary Economics, 51, 183–1216.

    Article  Google Scholar 

  • Beaudry, P., & Portier, F. (2014). News-driven business cycles: Insights and challenges. Journal of Economic Literature, 52, 993–1074.

    Article  Google Scholar 

  • Becker, G. S. (1975). Human capital. Chicago: The University of Chicago Press.

    Google Scholar 

  • Bella, G., & Mattana, P. (2014). Global indeterminacy of the equilibrium in the Chamley model of endogenous growth in the vicinity of a Bogdanov–Takens bifurcation. Mathematical Social Sciences, 71, 69–79.

    Article  Google Scholar 

  • Ben-Gad, M. (2003). Fiscal policy and indeterminacy in models of endogenous growth. Journal of Economic Theory, 108, 322–344.

    Article  Google Scholar 

  • Benhabib, J. (2014). Multiple equilibria in the Aghion-Howitt model. Ricerche Economiche, 68, 112–116.

    Google Scholar 

  • Benhabib, J., & Eusepi, S. (2005). The design of monetary and fiscal policy: A global perspective. Journal of Economic Theory, 123, 40–73.

    Article  Google Scholar 

  • Benhabib, J., & Farmer, R. (1994). Indeterminacy and increasing returns. Journal of Economic Theory, 63, 19–41.

    Article  Google Scholar 

  • Benhabib, J., & Farmer, R. E. (1996). Indeterminacy and sector specific externalities. Journal of Monetary Economics, 37, 397–419.

    Article  Google Scholar 

  • Benhabib, J., & Farmer, R. (1999). Indeterminacy and sunspots in macroeconomics. In J. B. Taylor Michael Woodford (Ed.), Handbook of macroeconomics (Vol. 1, Part A, pp. 387–448). Amsterdam: Elsevier.

    Google Scholar 

  • Benhabib, J., & Gali, J. (1995). On growth and indeterminacy: Some theory and evidence. Carnegie-Rochester Conference Series on Public Policy, 43(1), 163–211.

    Article  Google Scholar 

  • Benhabib, J., & Nishimura, K. (1998). Indeterminacy and sunspots with constant returns. Journal of Economic Theory, 81, 58–96.

    Article  Google Scholar 

  • Benhabib, J., & Perli, R. (1994). Uniqueness and indeterminacy: Transitional dynamics. Journal of Economic Theory, 63, 113–142.

    Article  Google Scholar 

  • Benhabib, J., & Wang, P. (2013). Financial constraints, endogenous markups, and self-fulfilling equilibria. Journal of Monetary Economics, 60, 789–805.

    Article  Google Scholar 

  • Benhabib, J., Perli, R., & Xie, D. (1994). Monopolistic competition, increasing returns and growth. Ricerche Economiche, 48, 279–298.

    Article  Google Scholar 

  • Benhabib, J., Meng. Q., & Nishimura, K. (2000). Indeterminacy under constant returns to scale in multisector economies. Econometrica, 68, 1541–1548.

    Google Scholar 

  • Benhabib, J., Schmitt-Grohé, S., & Uribe, M. (2001a). Monetary policy and multiple equilibria. American Economic Review, 91, 167–186.

    Google Scholar 

  • Benhabib, J., Schmitt-Grohe, S., & Uribe, M. (2001b). The perils of Taylor rules. Journal of Economic Theory, 96, 40–69.

    Google Scholar 

  • Benhabib, J., Wang, P., & Wen, Y. (2015). Sentiments and aggregate demand fluctuations. Econometrica, 83, 549–585, 03.

    Google Scholar 

  • Bennett, R., & Farmer, R. (2000). Indeterminacy with nonseparable utility. Journal of Economic Theory, 93, 118–143.

    Article  Google Scholar 

  • Bian, Y., & Meng, Q. (2004). Preferences, endogenous discount rate, and indeterminacy in a small open economy model. Economics Letters, 84, 315–322.

    Article  Google Scholar 

  • Black, F. (1974). Uniqueness of the price level in monetary growth models with rational expectations. Journal of Economic Theory, 7, 53–65.

    Article  Google Scholar 

  • Blanchard, O., & Kahn, C. (1980). The solution of linear diserence models under rational expectations. Econometrica, 48, 1305–1310.

    Article  Google Scholar 

  • Boldrin, M. (1992). Dynamic externalities, multiple equilibria, and growth. Journal of Economic Theory, 58, 198–218.

    Article  Google Scholar 

  • Boldrin, M., & Rustichini, A. (1994). Growth and indeterminacy in dynamic models with externalities. Econometrica, 62, 23–342.

    Article  Google Scholar 

  • Boldrin, M., & Woodford, M. (1990). Equilibrium models displaying endogenous fluctuations and chaos: A survey. Journal of Monetary Economics, 25, 189–222.

    Article  Google Scholar 

  • Bond, E., Wang, P., & Yip, C.-K. (1996). A general two-sector model of endogenous growth with physical and human capital. Journal of Economic Theory, 68, 149–173.

    Article  Google Scholar 

  • Brock, W. (1974). Money and growth: The case of long run perfect foresight. International Economic Review, 15, 750–777.

    Article  Google Scholar 

  • Caballe, J., & Santos, M. (1993). On endogenous growth with physical and human capital. Journal of Political Economy, 101, 1042–1067.

    Article  Google Scholar 

  • Caliendo, L. (2010). On the dynamics of the Hecksher-Ohlin theory (Working Papers 2010–011). Becker Friedman Institute for Research in Economics.

    Google Scholar 

  • Calvo, G. (1979). On models of money and perfect foresight. International Economic Review, 20, 83–103.

    Article  Google Scholar 

  • Carlstrom, C., & Fuerst, T. (2005). Investment and interest rate policy: A discrete-time analysis. Journal of Economic Theory, 123, 4–20.

    Article  Google Scholar 

  • Cass, D., & Shell, K. (1983). Do sunspots matter? Journal of Political Economy 90, 193–227.

    Article  Google Scholar 

  • Chamley, C. (1993). Externalities and dynamics in models of learning or doing. International Economic Review, 34, 583–609.

    Article  Google Scholar 

  • Chen, Z. (1992). Long-run equilibria in a dynamic Heckscher-Ohlin model. Canadian Journal of Economics, 25, 923–943.

    Article  Google Scholar 

  • Chen, B.-L. (2006). Public capital, endogenous growth, and endogenous fluctuations. Journal of Macroeconomics, 28, 768–774.

    Article  Google Scholar 

  • Chen, B.-L., & Chu, A. (2010). On R&D spillovers, multiple equilibria and indeterminacy. Journal of Economics, 100, 247–263.

    Google Scholar 

  • Chen, B.-L., & Hsu, M. (2007). Admiration is a source of indeterminacy. Economics Letters, 95, 96–103.

    Article  Google Scholar 

  • Chen, B.-L., Hus, Y.-S., & Mino, K. (2013). Can Consumption habit spillovers be a source of equilibrium indeterminacy? Journal of Economics, 109, 245–269.

    Article  Google Scholar 

  • Chen, B.-L., Hsu, Y.-S., & Mino, K. (2015). Welfare implications and equilibrium indeterminacy in a two-sector growth model with consumption externalities. Macroeconomic Dynamics, 19, 535–577.

    Article  Google Scholar 

  • Chen, B.-L., Hu, Y., & Mino, K. (2016). Stabilization effects of taxation rules in small-open economies with endogenous growth (KIER Working Papers 946). Institute of Economic Research, Kyoto University.

    Google Scholar 

  • Chen, S.-H., & Guo, J.-T. (2013). Progressive taxation and macroeconomic (In) stability with productive government spending. Journal of Economic Dynamics and Control, 37, 951–963.

    Article  Google Scholar 

  • Chen, S.-H., & Guo, J.-T. (2014). Progressive taxation and macroeconomic (In)stability with utility-generating government spending. Journal of Macroeconomics, 42, 174–183.

    Article  Google Scholar 

  • Chen, S.-H., & Guo, J.-T. (2015). Progressive taxation, endogenous growth, and macroeconomic (In)stability. (Working Paper) Department of Economics, University of Calfornia, Riverside.

    Google Scholar 

  • Chen, S.-H., & Guo, J.-T. (2016). Progressive taxation as an automatic destabilizer under endogenous growth (Working Paper). Department of Economics, University of California, Riverside.

    Google Scholar 

  • Chin, C.-T., Guo, J.-T., & Lai, C.-C. (2012). A note on indeterminacy and investment adjustment costs in an endogenously growing small open economy. Macroeconomic Dynamics, 16, 438–450.

    Article  Google Scholar 

  • Christiano, L., & Harrison, S. (1999). Chaos, sunspots and automatic stabilizers. Journal of Monetary Economics, 44; Cooper, R., & John, A. (1988). Coordinating coordination failures in Keynesian models. Quarterly Journal of Economics, 103, 441–463.

    Google Scholar 

  • Cooper, R. (1999). Macroeconomic complementarities. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Cooper, R., & John, A. (1988). Coordinating coordination failures in Keynesian models. Quarterly Journal of Economics, 103, 441–463.

    Article  Google Scholar 

  • Coury, T., & Wen, Y. (2009). Global indeterminacy in locally determinate real business cycle models. International Journal of Economic Theory, 5, 49–60.

    Article  Google Scholar 

  • Daito, I. (2009). Productive consumption and population dynamics in an endogen growth model: Demographic trends and human development aid in developing economies. Journal of Economic Dynamics and Control, 34, 696–709.

    Article  Google Scholar 

  • Dechert, W., & Nishimura, K. (1983). A complete characterization of optimal growth paths in an aggregated model with a non-concave production function. Journal of Economic Theory, 31, 332–354.

    Article  Google Scholar 

  • Diamond, P. (1982). Aggregate demand management in search equilibrium. Journal of Political Economy, 90, 881–894.

    Article  Google Scholar 

  • Diamond, P., Fudenberg, D. (1989). Rational expectations business cycles in search equilibrium. Journal of Political Economy, 97, 606–619.

    Article  Google Scholar 

  • Dong, F., Wen, Y., & Wang, P. (2015). Credit search and credit cycles. Economic Theory, 61(2), 215–239.

    Article  Google Scholar 

  • Drugeon, J.-P., & Venditti, A. (2001). Intersectoral external effects, multiplicities and indeterminacies. Journal of Economic Dynamics and Control, 25, 765–787.

    Article  Google Scholar 

  • Dufourt, F., Nishimura, K., & Venditti, A. (2015). Indeterminacy and sunspots in two-sector rbc models with generalized no-income-effect preferences. Journal of Economic Theory, 157, 1056–1080.

    Article  Google Scholar 

  • Dupor, W. (2001). Investment and interest rate policy. Journal of Economic Theory, 98, 85–113.

    Article  Google Scholar 

  • Edge, R. M., & Rudd, J. B. (2007). Taxation and the Taylor principle. Journal of Monetary Economics, 54, 2554–2567.

    Article  Google Scholar 

  • Eicher, T., & Turnovsky, S. (1999). Convergence in a two-sector nonscale growth model. Journal of Economic Growth, 4, 413–428.

    Article  Google Scholar 

  • Eusepi, S. (2009). On expectations-driven business cycles in economies with production externalities. International Journal of Economic Theory, 5, 9–23.

    Article  Google Scholar 

  • Farmer, R. (2004). Macroeconomics of self-fulfilling prophecies (2nd ed.). Cambridge: MIT Press.

    Google Scholar 

  • Farmer, R. (2008a). Aggregate demand and supply. International Journal of Economic Theory, 4, 77–93.

    Google Scholar 

  • Farmer, R. (2008b). Animal spirits. In L. Blume & S. Durlauf (Eds.), The new Palgrave dictionary of economics (2nd ed.). Basingstoke/Hampshire: Palgrave MacMillan.

    Google Scholar 

  • Farmer, R. (2010). Expectations, employment and prices. Oxford/New York: Oxford University Press.

    Google Scholar 

  • Farmer, R. (2012). Confidence, crashes and animal spirits. Economic Journal, 122, 155–172.

    Article  Google Scholar 

  • Farmer, R. (2016). The evolution of endogenous business cycles. Macroeconomic Dynamics, 20, 544–557.

    Article  Google Scholar 

  • Farmer, R., & Guo, J.-T. (1994). Real business cycles and animal spirit hypothesis. Journal of Economic Theory, 63, 42–72.

    Article  Google Scholar 

  • Farmer, R., & Guo, J.-T.(1995). The econometrics of indeterminacy: An applied study. Carnegie-Rochester Conference Series on Public Policy, 43, 225–271.

    Article  Google Scholar 

  • Farmer, R., & Lahiri, A. (2005). A two-country model of endogenous growth. Review of Economic Dynamics, 8, 68–88.

    Article  Google Scholar 

  • Farmer, R., & Lahiri, A. (2006). Economic growth in an interdependent world economy. Economic Journal, 116, 969–990.

    Article  Google Scholar 

  • Frankel, D., & Pauzner, A. (2000). Resolving indeterminacy in dynamic setting: The role of shocks. Quarterly Journal of Economics, 105, 285–304.

    Article  Google Scholar 

  • Fujisaki, S., & Mino, K. (2007). Generalized Taylor rule and determinacy of growth equilibrium. Economics Bulletin, 5(11), 1–7.

    Google Scholar 

  • Fujisaki, S., & Mino, K. (2008). Income taxation, interest-rate control and macroeconomic stability with balanced-budget (Discussion papers in Economics and Business 08–20). Graduate School of Economics and Osaka School of International Public Policy (OSIPP), Osaka University.

    Google Scholar 

  • Fukao, K., & Benabou, R. (1993). History versus expectations: A comment. Quarterly Journal of Economics, 108, 535–542.

    Article  Google Scholar 

  • Fukuda, S. (1993). The emergence of equilibrium cycles in a monetary economy with a separable utility function. Journal of Monetary Economics, 32, 321–334.

    Article  Google Scholar 

  • Futagami, K., & Mino, K. (1993). Threshold externalities and cyclical growth in a stylized model of capital accumulation. Economics Letters, 41, 99–105.

    Article  Google Scholar 

  • Futagami, K., & Mino, K. (1995). Public capital and patterns of growth in the presence of threshold externalities. Journal of Economics, 61, 123–146.

    Article  Google Scholar 

  • Futagami, K., Iwaisako, T., & Ohdoi, R. (2008). Debt policy rule, productive government spending, and multiple growth paths. Macroeconomic Dynamics, 12, 445–462.

    Article  Google Scholar 

  • Futagami, K., Hori, T., Maebayashi, N., & Morimoto, K. (2017). Debt policy rules in an open economy. Journal of Public Economic Theory, 19, 158–187.

    Article  Google Scholar 

  • Gali, J. (1994). Keeping up with the Joneses: Consumption externalities, portfolio choice, and aasset prices. Journal of Money, Credit and Banking, 26, 1–8.

    Article  Google Scholar 

  • Gali, J. (1995). Product diversity,eendogenous markups, and development traps. Journal of Monetary Economics, 36, 39–63.

    Google Scholar 

  • Ghiglino, C., & Sorger, G. (2002). Poverty traps, indeterminacy, and the wealth distribution. Journal of Economic Theory, 105, 120–139.

    Article  Google Scholar 

  • Ghiglino, C., & Olszak-Duquenne, M. (2005). On the impact of heterogeneity on indeterminacy. International Economic Review, 46, 171–188.

    Article  Google Scholar 

  • Ghiglino, C., & Venditti, A. (2007). Wealth inequality, preference heterogeneity and macroeconomic volatility in two-sector economies. Journal of Economic Theory, 135, 414–441.

    Article  Google Scholar 

  • Ghilardi, M., & Rossi, R. (2014). Aggregate stability and balanced-budget rules. Journal of Money, Credit and Banking, 46, 1787–1809.

    Article  Google Scholar 

  • Giannitsarou, C. (2007). Balanced budget rules and aggregate instability: The role of consumption taxes. Economic Journal, 117, 1423–1435.

    Article  Google Scholar 

  • Greenwood, G., Hercowitz, Z., & Huffman, G. (1988). Investment, capacity utilization, and the real business cycle. American Economic Review, 78, 402–417.

    Google Scholar 

  • Greiner, A., & Semmler, W. (1995). Multiple steady states, indeterminacy and cycles in a basic model of endogenous growth. Journal of Economics, 63, 79–99.

    Article  Google Scholar 

  • Greiner, A., & Semmler, W. (1996). Saddle path stability, fluctuations, and indeterminacy in economic growth. Studies in Nonlinear Dynamics and Econometrics, 1, 1–16.

    Google Scholar 

  • Guo, J.-T., & Harrison, S. (2001a). Indeterminacy with capital utilization and sector-specific externalities. Economics Lettes, 72, 355–360.

    Google Scholar 

  • Guo, J.-T., & Harrison, S. (2001b). Tax policy and stability in a model with sector-specific externalities. Review of Economic Dynamics, 4, 75–89.

    Google Scholar 

  • Guo, J.-T., & Harrison, S. (2004). Balanced-budget rules and macroeconomic (In)stability. Journal of Economic Theory, 119, 357–363.

    Google Scholar 

  • Guo, J.-T., & Harrison, S. (2008). Useful government spending and macroeconomic (In)stability under balanced-budget rules. Journal of Public Economic Theory, 10, 383–397.

    Google Scholar 

  • Guo, J.-T., & Harrison, S. (2010). Indeterminacy with no-income-effect preferences and sector-specific externalities. Journal of Economic Theory, 145, 287–300.

    Google Scholar 

  • Guo, J.-T., & Lansing, K. (1998). Indeterminacy and stabilization policy. Journal of Economic Theory, 82, 481–490.

    Article  Google Scholar 

  • Guo, J.-T., & Lansing, K. (2002). Fiscal policy, increasing returns, and endogenous fluctuations. Macroeconomic Dynamics, 6, 633–664.

    Google Scholar 

  • Guo, J.-T., Sirbu, A.-L., & Suen, R. (2012). On expectations-driven business cycles in economies with production externalities: A comment. International Journal of Economic Theory, 8, 313–319.

    Article  Google Scholar 

  • Hansen, G. (1985). Indivisible labor and the business cycle. Journal of Monetary Economics, 16, 309–327.

    Article  Google Scholar 

  • Harrison, S. (2001). Indeterminacy in a model with sector-specific externalities. Journal of Economic Dynamics and Control, 25, 747–764.

    Article  Google Scholar 

  • Harrison, S. (2003). Returns to scale and externalities in the consumption and investment sectors. Review of Economic Dynamics, 6, 963–976.

    Article  Google Scholar 

  • Harrison, S., & Weder, M. (2013). Sunspots and credit frictions. Macroeconomic Dynamics, 17, 1055–1069.

    Article  Google Scholar 

  • Hashimzade, N., & Ortigueira, S. (2005). Endogenous business cycles with frictional labor markets. Economic Journal, 115, 161–175.

    Article  Google Scholar 

  • Herrendorf, V. & Walldman, R. (2000). Ruling out multiplicity and indeterminacy: the role of heterogeneity. Review of Economic Studies, 67, 295–307.

    Article  Google Scholar 

  • Hintermaier, T. (2003). On the minimum degree of returns to scale in sunspot models of the business cycle. Journal of Economic Theory, 110, 400–409.

    Article  Google Scholar 

  • Hori, T, Maebayashi, N. (2016). Debt policy rule, utility-generating government spending, and indeterminacy of the transition path in an AK model. Forthcoming in Macroeconomic Dynamics.

    Google Scholar 

  • Howitt, P., & McAfee, P. (1992). Animal spirits. American Economic Review, 82, 493–507.

    Google Scholar 

  • Hu, Y., & Mino, K. (2013). Trade structure and belief-driven fluctuations in a global economy. Journal of International Economics, 90, 414–424.

    Article  Google Scholar 

  • Hu, Y., & Shimomura, K. (2011). Multiple equilibria and welfare effects of transfers in a two-country dynamic general equilibrium model. International Journal of Development and Conflict, Gokhale Institute of Politics and Economics, 1, 379–397.

    Article  Google Scholar 

  • Huang, K., & Meng, Q. (2007) Capital and macroeconomic instability in a discrete-time model with forward-looking interest rate rules. Journal of Economic Dynamics and Control, 31, 2802–2826.

    Article  Google Scholar 

  • Huang, K., & Meng, Q. (2009). On interest rate policy and equilibrium stability under increasing returns: A note. Macroeconomic Dynamics, 13, 535–552.

    Article  Google Scholar 

  • Itaya, J., & Mino, K. (2003). Inflation, transaction costs and indeterminacy in monetary economies with endogenous growth. Economica, 70, 1–20.

    Article  Google Scholar 

  • Itaya, J., & Mino, K. (2004). Interest-rate rule and multiple equilibria with endogenous growth. Economics Bulletin, 5(6), 1–8.

    Google Scholar 

  • Itaya, J., & Mino, K. (2007). Technology, preference structure and the growth effect of momey supply. Macroeconomic Dynamics, 11, 589–612.

    Article  Google Scholar 

  • Iwasa, K., & Nishimura, K. (2014). Dynamic two-country Heckscher–Ohlin model with externality. International Journal of Economic Theory, 10, 53–74.

    Article  Google Scholar 

  • Jaimovich, N. (2007). Firm dynamics and markup variations: Implications for sunspot equilibria and endogenous economic fluctuations. Journal of Economic Theory, 137, 300–325.

    Article  Google Scholar 

  • Jaimovich, N. (2008). Income effects and indeterminacy in a calibrated one-sector growth model. Journal of Economic Theory, 143, 610–623.

    Article  Google Scholar 

  • Jevons, W. (1884). The solar period and the price of corn. In W. Stanley Jevons (Ed.), Investigations in currency and finance (pp. 194–205). London: Macmillan.

    Google Scholar 

  • Jin, K. (2012). Industrial structure and capital flows. American Economic Review, 102, 2111–2146.

    Article  Google Scholar 

  • Jones, L., & Manuelli, R. (1990). A convex model of equilibrium growth: Theory and policy implications. Journal of Political Economy, 98, 1008–1038.

    Article  Google Scholar 

  • Kamihigashi, T. (1996). Real business cycles and sunspot fluctuations are observationally equivalent. Journal of Monetary Economics, 37, 105–117.

    Article  Google Scholar 

  • Kaplan, G., & Menzio, G. (2016). Shopping externalities and self-fulfilling unemployment fluctuations. Journal of Political Economy, 124, 771–825.

    Article  Google Scholar 

  • Kaplan, G., Moll, B., & Violante, G. (2016). Monetary policy according to HANK (NBER Working Papers No. 21897). National Bureau of Economic Research, Inc.

    Book  Google Scholar 

  • Keynes, J. M. (1936). The general theory of employment, interest and money. London: Macmillan/Cambridge University Press.

    Google Scholar 

  • Kim, J. (2003). Indeterminacy and investment adjustment costs: An analytical result. Macroeconomic Dynamics, 7, 394–406.

    Google Scholar 

  • King, R., Plosser, C., & Rebelo, S. (1988a). Production, growth and business cycles: I. The basic neoclassical model. Journal of Monetary Economics, 21, 195–232.

    Google Scholar 

  • King, R., Plosser, C., & Rebelo, S. (1988b). Production, growth and business cycles: II. New directions. Journal of Monetary Economics, 21, 309–341.

    Google Scholar 

  • Kiyotaki, N., & Moore, J. (1997). Credit cycles. Journal of Political Economy, 105, 211–248.

    Google Scholar 

  • Krause, M., & Lubik, T. (2010). Instability and indeterminacy in a simple search and matching model. Economic Quarterly, Federal Reserve Bank of Richmond, Issue 3Q, 259–272.

    Google Scholar 

  • Krugman, P. (1991). History versus expectations. Quarterly Journal of Economics, 106, 651–667.

    Google Scholar 

  • Kurozumi, T. (2006). Determinacy and expectational sability of equilibrium in a monetary sticky-price model with Taylor rules. Journal of Monetary Economics, 53, 827–846.

    Google Scholar 

  • Kurozumi, T., & Van Zandweghe, W. (2008). Investment, interest rrate policy, and equilibrium stability. Journal of Economic Dynamics and Control, 35, 1489–1516.

    Article  Google Scholar 

  • Kurozumi, T., & Zandweghe, W. (2011). Determinacy under inflation targeting interest rate policy in a sticky price model with investment (and labor bargaining). Journal of Money, Credit and Banking, 43, 1019–1033.

    Article  Google Scholar 

  • Kydland, F., & Prescott, E. (1982). Time to build and aggregate fluctuations. Econometrica, 50, 1345–1370.

    Article  Google Scholar 

  • Ladrón-de-Guevara, A., Ortigueira, S., & Santos, M. S. (1997). Equilibrium dynamics in two sector models of endogenous growth. Journal of Economic Dynamics and Control, 21, 115–143.

    Article  Google Scholar 

  • Lahiri, A. (2001). Growth and equilibrium indeterminacy: The role of capital mobility. Economic Theory, 17, 197–208.

    Article  Google Scholar 

  • Leeper, E. (1991). Equilibria under ‘Active’ and ‘Passive’ monetary and fiscal policies. Journal of Monetary Economics, 27, 129–147.

    Article  Google Scholar 

  • Linnemann, L. (2006). Interest rate policy, debt, and indeterminacy with distortionary taxation. Journal of Economic Dynamics and Control, 30, 487–510.

    Article  Google Scholar 

  • Linnemann, L. (2007). Balanced budget rules and macroeconomic stability with non-separable utility. Journal of Macroeconomics, 30, 199–215.

    Article  Google Scholar 

  • Liu, Z., & Wang, P. (2014). Credit constraints and self-fulfilling business cycles. American Economic Journal: Macroeconomics, 6, 32–69.

    Google Scholar 

  • Long, J., & Plosser, C. (1983). Real business cycles. Journal of Political Economy, 91, 39–69.

    Article  Google Scholar 

  • Lubik, T. (2003). Investment spending, equilibrium determinacy, and the interactions of monetary and fiscal policy (Economics Working Paper Archive 490). Department of Economics, The Johns Hopkins University.

    Google Scholar 

  • Lucas, R. E. (1988). On the mechanics of development. Journal of Monetary Economics, 22, 3–42.

    Article  Google Scholar 

  • Lucas, R. E. (1993). Making a miracle. Econometrica, 42, 293–316.

    Google Scholar 

  • Matsuyama, K. (1990). Sunspot Equilibria (rational bubbles) in a model of money-in-the-utility-function. Journal of Monetary Economics, 25, 137–144.

    Article  Google Scholar 

  • Matsuyama, K. (1991). Increasing returns, industrialization, and indeterminacy of equilibrium. Quarterly Journal of Economics, 106, 617–650.

    Article  Google Scholar 

  • Mattana, P., Nishimura, K., & Shigoka, T. (2009). Homoclinic ifurcation and global indeterminacy of equilibrium in a two-sector endogenous growth model. International Journal of Economic Theory, 5, 25–47.

    Article  Google Scholar 

  • McCallum, B. (1983). On non-uniqueness in rational expectations models: An attempt at perspective. Journal of Monetary Economics, 11, 139–168.

    Article  Google Scholar 

  • Meng, Q. (2003). Multiple transitional growth paths in endogenously growing open economies. Journal of Economic Theory, 108, 365–376.

    Article  Google Scholar 

  • Meng, Q. (2015). Balanced-budget consumption taxes and aggregate stability in a small open economy. Economics Letters, 137, 214–217.

    Article  Google Scholar 

  • Meng, Q., & Velasco, A. (2003). Indeterminacy in a small open economy with endogenous labor supply. Economic Theory, 22, 661–670.

    Article  Google Scholar 

  • Meng, Q., & Velasco, A. (2004). Market imperfections and the instability of open economies. Journal of International Economics, 64, 503–519.

    Article  Google Scholar 

  • Meng, Q., & Yip, C.-K. (2004). Investment, interest rate rules, and equilibrium determinacy. Economic Theory, 23, 863–878.

    Article  Google Scholar 

  • Miao, J., & Wang, P. (2012). Bubbles and total factor productivity. American Economic Review, 102, 82–87.

    Article  Google Scholar 

  • Milesi-Ferretti, G., & Roubini, N. (1998). On taxation of human capital in models of endogenous growth. Journal of Public Economics, 70, 237–254.

    Article  Google Scholar 

  • Mino, K. (1996). Analysis of a two-sector model of endogenous growth with capital income taxation. International Economic Review, 37, 227–251.

    Article  Google Scholar 

  • Mino, K. (1998). Equilibrium determinacy of a two-sector AK model (MPRA Paper No. 17323). University Library of Munich.

    Google Scholar 

  • Mino, K. (1999). Non-separable utility function and indeterminacy of equilibrium in a model with human capital. Economics Letters, 62, 311–317.

    Article  Google Scholar 

  • Mino, K. (2001). Indeterminacy and endogenous growth with social constant returns. Journal of Economic Theory, 97, 203–222.

    Article  Google Scholar 

  • Mino, K. (2002). Indeterminacy in two-sector models of endogenous growth with leisure (MPRA Paper 16994). University Library of Munich, Germany.

    Google Scholar 

  • Mino, K. (2008). Preference structure and volatility in a financially integrated world. In T. Kamihigashi & L. Zhao (Eds.), International trade and economic dynamics: Essays in memory of Koji Shimomura (323–). Berlin/Hiderberg: Springer.

    Google Scholar 

  • Mino, K., & Nakamoto, Y. (2012). Consumption externalities and equilibrium dynamics with heterogeneous agents. Mathematical Social Sciences, 64, 225–233.

    Article  Google Scholar 

  • Mino, K., & Nakamoto, Y. (2016). Heterogeneous conformism and wealth distribution in a neoclassical growth model. Economic Theory, 62, 689–717.

    Article  Google Scholar 

  • Mino, K., & Shibata, A. (1995). Monetary policy, overlapping generations, and patterns of growth. Economica, 62, 179–194.

    Article  Google Scholar 

  • Mino, K., Nishimura, K., Shimomura, K., & Wang, P. (2008). Equilibrium dynamics in discrete-time endogenous growth models with social constant returns. Economic Theory, 34, 1–23.

    Article  Google Scholar 

  • Mitra, T. (1998). On equilibrium dynamics under externalities in a model of economic development. Japanese Economic Review, 49, 85–107.

    Article  Google Scholar 

  • Mortensen, D. (1999). Equilibrium unemployment dynamics. International Economic Review, 40, 889–914.

    Article  Google Scholar 

  • Mulligan, C., & Sala-i-Martin, X. (1993). Transitional dynamics in two-sector models of endogenous growth. Quarterly Journal of Economics, 103, 739–773.

    Article  Google Scholar 

  • Naito, T. (2006). Pattern of trade and indeterminacy. Journal of Macroeconomics, 28, 409–427.

    Article  Google Scholar 

  • Naito, T., & Ohdoi, R. (2008). Dynamics of a two-sector endogenous growth model with intersectoral knowledge spillovers. Economic Theory, 35, 599–605.

    Article  Google Scholar 

  • Naito, T., & Ohdoi, R. (2011). A two-country model of trade and growth with intersectoral knowledge spillovers. Journal of Economics, 103, 39–58.

    Article  Google Scholar 

  • Nishimura, K., & Shimomura, K. (2002a). Indeterminacy in a dynamic small open economy. Journal of Economic Dynamics and Control, 27, 271–281.

    Google Scholar 

  • Nishimura, K., & Shimomura, K. (2002b). Trade and indeterminacy in a dynamic general equilibrium model. Journal of Economic Theory, 105, 249–259.

    Google Scholar 

  • Nishimura, K., Venditti, A., & Yano, M. (2014). Destabilization effect of international trade in a perfect foresight dynamic general equilibrium model. Economic Theory, 52, 357–392.

    Google Scholar 

  • Nishimura, K., Seegmuller, T., & Venditti, A. (2015). Fiscal policy, debt constraint and expectations-driven volatility. Journal of Mathematical Economics, 61, 305–316.

    Google Scholar 

  • Obstfeld, M., & Rogoff, K. (1983). Speculative hyperinflations in maximizing models: Can we rule them out? Journal of Political Economy, 91, 675–687.

    Article  Google Scholar 

  • Ono, Y., & Shibata, A. (2010). Time patience and specialization patterns in the presence of asset trade. Journal of Money, Credit and Banking, 42, 93–112.

    Google Scholar 

  • Palivos, T., Yip, C.-K., & Zhang, J. (2003). Transitional dynamics and indeterminacy of equilibria in an endogenous growth model with a public input. Review of Development Economics, 7, 86–98.

    Google Scholar 

  • Park, H., & Philippoulos, A. (2004). Indeterminacy and fiscal policy in a growing economy. Journal of Economic Dynamics and Control, 28, 645–660.

    Article  Google Scholar 

  • Pavlov, O., & Weder, M. (2012). Variety matters. Journal of Economic Dynamics and Control, 36, 629–641.

    Article  Google Scholar 

  • Pelloni, A., & Waldmann, R. (1998). Stability properties of a growth model. Economics Letters, 61, 55–60.

    Article  Google Scholar 

  • Pelloni, A., & Waldmann, R. (2000). Can west improve welfare? Journal of Public Economics, 77, 45–79.

    Article  Google Scholar 

  • Rebelo, S. (1991). Long-run policy analysis and long-run growth. Journal of Political Economy, 99, 500–521.

    Article  Google Scholar 

  • Rogerson, R. (1988). Indivisible labor, lotteries and equilibrium. Journal of Monetary Economics, 21, 3–16.

    Article  Google Scholar 

  • Romer, P. (1986). Increasing returns and long-run growth. Journal of Political Economy, 94, 1002–1037.

    Article  Google Scholar 

  • Romer, P. (1990). Endogenous technological change. Journal of Political Economy, 98, S71–102.

    Article  Google Scholar 

  • Schmitt-Grohé, S. (1997). Comparing four models of aggregate fluctuations due to self-fulfilling expectations. Journal of Economic Theory, 72, 96–147.

    Article  Google Scholar 

  • Schmitt-Grohé, S. (2000). Endogenous business cycles and the dynamics of output, hours, and consumption. American Economic Review, 90, 1136–1159.

    Article  Google Scholar 

  • Schmitt-Grohé, S., & Uribe, M. (1997). Balanced-budget rules, distortionary taxes, and aggregate instability. Journal of Political Economy, 105, 976–1000.

    Article  Google Scholar 

  • Schmitt-Grohé, S., & Uribe, M. (2003). Closing small open economy models. Journal of International Economics, 61, 163–185.

    Article  Google Scholar 

  • Sim, H., & Ho, K.-W. (2007). Autarkic indeterminacy and trade determinacy. International Journal of Economic Theory, 4, 315–328.

    Article  Google Scholar 

  • Skiba, A. (1978). Optimal growth with a convex-concave production function. Econometrica, 46, 527–539.

    Article  Google Scholar 

  • Steger, T. (2002). Productive consumption, the intertemporal consumption trade-off and growth. Journal of Economic Dynamics & Control, 26, 1053–1068.

    Google Scholar 

  • Suen, M.-H., & Yip, C.-K. (2005). Superneutrality, indeterminacy and endogenous growth. Journal of Macroeconomics, 27, 579–595.

    Article  Google Scholar 

  • Taylor, J. (1993). Discretion versus policy rules in practice. Carnegie-Rochester Conference Series on Public Policy, 39, 195–214.

    Article  Google Scholar 

  • Turnovsky, S. (1997). International macroeconomics. MIT Press., Cambridge MA

    Google Scholar 

  • Turnovsky, S. (1999). Fiscal policy and growth in a small open economy with elastic labor supply. Canadian Journal of Economics, 32, 1191–1214.

    Article  Google Scholar 

  • Turnovsky, S. (2000). Fiscal policy, elastic labor supply, and endogenous growth. Journal of Monetary Economics, 45, 185–210.

    Article  Google Scholar 

  • Turnovsky, S., & Monteiro, G. (2007). Consumption externalities, production externalities, and efficient capital aaccumulation under time non-separable preferences. European Economic Review, 51, 479–504.

    Article  Google Scholar 

  • Turnovsky, S., & Sen, P. (1995). Investment in a two-sector dependent economy. Journal of the Japanese and International Economies, 9, 29–55.

    Article  Google Scholar 

  • Uzawa, H. (1963). On a two-sector model of economic growth II. Review of Economic Studies, 30, 105–118.

    Article  Google Scholar 

  • Weder, M. (2000). Consumption externalities, production externalities and indeterminacy. Metroeconomica, 51, 435–453.

    Article  Google Scholar 

  • Weder, M. (2001). Indeterminacy in a small open economy Ramsey growth model. Journal of Economic Theory, 98, 339–356.

    Article  Google Scholar 

  • Weder, M. (2006a) Interest rate rules and macroeconomic stabilization. Recherches Economique de Louvain, 72, 195–204.

    Google Scholar 

  • Weder, M. (2006b). Taylor rules and macroeconomic instability or how the central bank can pre-empt sunspot expectations. Journal of Money, Credit and Banking, 38, 655–678.

    Google Scholar 

  • Weder, M. (2008). Sticky prices and indeterminacy. Journal of Money, Credit and Banking, 40, 1073–1082.

    Google Scholar 

  • Weil, D. (1989). Animal spirits and increasing returns. American Economic Review, 79, 889–894.

    Google Scholar 

  • Wen, Y. (1998). Capacity utilization under increasing returns to scale. Journal of Economic Theory, 81, 7–36.

    Google Scholar 

  • Wen, Y. (2001). Understanding self-fulfilling rational expectations equilibria in real business cycle models. Journal of Economic Dynamics and Control, 25, 1221–1240.

    Article  Google Scholar 

  • Wong, T.-N., & Yip, C.-K. (2010). Indeterminacy and the elasticity of substitution in one-sector models. Journal of Economic Dynamics and Control, 34, 623–635.

    Google Scholar 

  • Xie, D. (1994). Divergence in economic performance: Transitional dynamics with multiple equilibria. Journal of Economic Theory, 63, 97–112.

    Google Scholar 

  • Yip, C. K., & Li, K. F. (2004). Monetary policy and equilibrium indeterminacy in a cash-in-advance economy with investment. Economic Bulletin, 5(2), 1–7.

    Google Scholar 

  • Yong, B., & Meng, Q. (2004). Preferences, endogenous discount rate, and indeterminacy in a small open economy model. Economics Letters, 84, 315–322.

    Google Scholar 

  • Zhang, Y. (2008). Does the utility function form matter for indeterminacy in a two sector small open economy. Annals of Economics and Finance, 9–1, 61–71.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendices

Appendices

6.1.1 Appendix 1: Proof of Proposition6.1

When \(\dot{q} =\dot{ q}^{{\ast}} = 0\) in (6.48a) and (6.48b), it holds that

$$\displaystyle{ a_{1}A_{1}k_{1}\left (\,p\right )^{\alpha _{1}-1} = a_{1}A_{1}k_{1}\left (\,p^{{\ast}}\right )^{\alpha _{1}-1} =\rho +\delta. }$$

Hence, by use of (6.15a), we find

$$\displaystyle{ p = p^{{\ast}} = \left (\frac{A_{2}} {A_{1}}\right )\left (\frac{a_{2}} {a_{1}}\right )^{\alpha _{2}}\left (\frac{b_{2}} {b_{1}}\right )^{1-\alpha _{2} }\left ( \frac{\rho +\delta } {a_{1}A_{1}}\right )^{\frac{\alpha _{2}-\alpha _{1}} {\alpha _{1}-1} }. }$$

These conditions show that the steady state levels of p and p ∗ are uniquely given and it holds that p = p ∗ in the steady state. The steady state levels of capital stocks satisfying \(\dot{K} =\dot{ K}^{{\ast}} = 0\) in (6.47a) and (6.47b) are determined by the following conditions:

$$\displaystyle{ \frac{K - k_{2}\left (\,p\right )} {k_{1}\left (\,p\right ) - k_{2}\left (\,p\right )}A_{1}k_{1}\left (\,p\right )^{\alpha _{1}} =\delta K, }$$
$$\displaystyle{ \frac{K^{{\ast}}- k_{2}\left (\,p^{{\ast}}\right )} {k_{1}\left (\,p^{{\ast}}\right ) - k_{2}\left (\,p^{{\ast}}\right )}A_{1}k_{1}\left (\,p^{{\ast}}\right )^{\alpha _{1} } =\delta K^{{\ast}}. }$$

Using the conditions for \(\dot{p} =\dot{ p}^{{\ast}} = 0\) and the fact that p = p ∗ holds in the steady state, we confirm that the steady state level of capital stock in each county has the same value given by

$$\displaystyle{ K = K^{{\ast}} = \frac{\left (aA_{1}\right )^{ \frac{1} {1-\alpha _{1}} }\left (\rho +\delta \right )^{ \frac{\alpha _{1}} {\alpha _{1}-1} }} {\rho +\delta \left (1 -\delta +\frac{a_{2}b_{1}} {b_{2}} \right )} \left (\frac{a_{2}b_{1}} {a_{1}b_{2}}\right ), }$$

which has a positive value. We also find that the steady state values of labor allocation to the investment good sector are

$$\displaystyle{ L_{1} = L_{1}^{{\ast}} = \frac{a_{1}\delta \left (\frac{a_{2}b_{1}} {a_{1}b_{2}} \right )} {\rho +(1 - a_{1})\delta + a_{1}\delta \left (\frac{a_{2}b_{1}} {a_{1}b_{2}} \right )} \in \left (0,1\right ). }$$

Hence, (6.20) is fulfilled so that both countries specialize imperfectly.

6.1.2 Appendix 2: Proof of Proposition6.2

Since the functional form of \(R\left (K,K^{{\ast}},p,p^{{\ast}}\right )\) in (6.55) is complicated, it is simpler to treat a dynamic system with respect to K, K ∗, q, and q ∗. We thus focus on the dynamic system consisting of (6.47a), (6.47b), (6.48a), and (6.48b) with \(p =\pi \left (K,K^{{\ast}},q,q^{{\ast}};\bar{m}\right )\) and \(p^{{\ast}} =\pi ^{{\ast}}\left (K,K^{{\ast}},q,q^{{\ast}};\bar{m}\right )\), where \(\bar{m}\) is fixed.Footnote 14

To prove Proposition 6.2, the following facts are useful:

Lemma A.1

In the symmetric steady state in which K = K ∗ and q = q ∗, the following relations are satisfied:

$$\displaystyle\begin{array}{rcl} & y_{K}^{i}\left (K,p\right ) = y_{K^{{\ast}}}^{i}\left (K^{{\ast}},p^{{\ast}}\right ),\ \ \ i = 1,2, & {}\\ & y_{p}^{i}\left (K,p\right ) = y_{p^{{\ast}}}^{i}\left (K^{{\ast}},p^{{\ast}}\right ),\ \ \ i = 1,2, & {}\\ & \pi _{K}\left (K,K^{{\ast}},q,q^{{\ast}}\right ) =\pi _{ K}^{{\ast}}\left (K,K^{{\ast}},q,q^{{\ast}}\right ) =\pi _{K^{{\ast}}}\left (K,K^{{\ast}},q,q^{{\ast}}\right ) =\pi _{ K^{{\ast}}}^{{\ast}}\left (K,K^{{\ast}},q,q^{{\ast}}\right ),& {}\\ & \pi _{q}\left (K,K^{{\ast}},q,q^{{\ast}}\right ) =\pi _{ q^{{\ast}}}^{{\ast}}\left (K,K^{{\ast}},q,q^{{\ast}}\right ), & {}\\ & \pi _{q^{{\ast}}}\left (K,K^{{\ast}},q,q^{{\ast}}\right ) =\pi _{ q}^{{\ast}}\left (K,K^{{\ast}},q,q^{{\ast}}\right ). & {}\\ \end{array}$$

Proof

By the functional forms of \(y_{j}^{i}\left (\cdot \right )\ (i = 1,2,j = K,K^{{\ast}},p,p^{{\ast}})\), it is easy to see that \(y_{K}^{i}\left (K,p\right ) = y_{K^{{\ast}}}^{i}\left (K^{{\ast}},p^{{\ast}}\right )\) and \(y_{p}^{i}\left (K,p\right ) = y_{p^{{\ast}}}^{i}\left (K^{{\ast}},p^{{\ast}}\right )\) are established when p = p ∗ and K = K ∗.As for the rest of the results, we use \(p\lambda \left (\cdot \right ) = q\) and \(p^{{\ast}}\lambda \left (\cdot \right )\bar{m}^{-\sigma } = q^{{\ast}}\). the total differentiation of \(p\lambda \left (\cdot \right ) = q\) and \(p^{{\ast}}\lambda \left (\cdot \right )\bar{m}^{-\sigma } = q^{{\ast}}\) yields the following:

$$\displaystyle{ \frac{\partial p} {\partial K} =\pi _{K} = - \frac{p\lambda _{K}} {\lambda +p\lambda _{P} + p^{{\ast}}\lambda _{p^{{\ast}}}},\ \ \ \ \frac{\partial p} {\partial K^{{\ast}}} =\pi _{K^{{\ast}}} = - \frac{p\lambda _{K^{{\ast}}}} {\lambda +p\lambda _{P} + p^{{\ast}}\lambda _{p^{{\ast}}}}, }$$
$$\displaystyle{ \ \ \ \ \frac{\partial p^{{\ast}}} {\partial K} =\pi _{ K}^{{\ast}} = - \frac{p^{{\ast}}\lambda _{ K}} {\lambda +p\lambda _{P} + p^{{\ast}}\lambda _{p^{{\ast}}}},\ \ \ \ \frac{\partial p^{{\ast}}} {\partial K^{{\ast}}} =\pi _{ K^{{\ast}}}^{{\ast}} = - \frac{p^{{\ast}}\lambda _{ K^{{\ast}}}} {\lambda +p\lambda _{P} + p^{{\ast}}\lambda _{p^{{\ast}}}}, }$$
$$\displaystyle{ \frac{\partial p} {\partial q} =\pi _{q} = \frac{\lambda +p^{{\ast}}\lambda _{p^{{\ast}}}} {\lambda \left (\lambda +p\lambda _{P} + p^{{\ast}}\lambda _{p^{{\ast}}}\right )},\ \ \ \frac{\partial p} {\partial q^{{\ast}}} =\pi _{q^{{\ast}}} = - \frac{p\lambda _{p}} {\lambda \left (\lambda +p\lambda _{P} + p^{{\ast}}\lambda _{p^{{\ast}}}\right )}, }$$
$$\displaystyle{ \frac{\partial p^{{\ast}}} {\partial q} =\pi _{ q}^{{\ast}} = - \frac{p^{{\ast}}\lambda _{ p^{{\ast}}}} {\lambda +p\lambda _{P} + p^{{\ast}}\lambda _{p^{{\ast}}}},\ \ \ \ \frac{\partial p^{{\ast}}} {\partial q^{{\ast}}} =\pi _{ q^{{\ast}}}^{{\ast}} = \frac{\lambda +p\lambda _{p}} {\lambda +p\lambda _{P} + p^{{\ast}}\lambda _{p^{{\ast}}}}. }$$

Since \(\lambda _{K}(\cdot ) =\lambda _{K^{{\ast}}}\left (\cdot \right )\) and \(\lambda _{p}\left (\cdot \right ) =\lambda _{p^{{\ast}}}\left (\cdot \right )\) in the steady state where K = K ∗ and p = p ∗, we obtain \(\pi _{K} =\pi _{ K}^{{\ast}} =\pi _{K^{{\ast}}} =\pi ^{{\ast}},\ \pi _{q} =\pi _{ q^{{\ast}}}^{{\ast}}\) and \(\pi _{q^{{\ast}}} =\pi _{ q}^{{\ast}}\). ■

Under a given level of \(\bar{m}\), let us linearize the dynamic system of (6.47a), (6.47b), (6.48a), and (6.48b) at the steady state. The coefficient matrix of the linearized system is given by

$$\displaystyle{ J = \left [\begin{array}{cccc} y_{K}^{1} -\delta +y_{p}^{1}\pi _{K}& y_{p}^{1}\pi _{K^{{\ast}}} & y_{p}^{1}\pi _{q} & y_{p}^{1}\pi _{q^{{\ast}}} \\ y_{p^{{\ast}}}^{1}\pi _{K}^{{\ast}} &y_{K^{{\ast}}}^{1} -\delta +y_{p^{{\ast}}}^{1}\pi _{K^{{\ast}}}^{{\ast}}& y_{p^{{\ast}}}^{1}\pi _{q}^{{\ast}} & y_{p^{{\ast}}}^{1}\pi _{q^{{\ast}}}^{{\ast}} \\ - q\hat{r}^{{\prime}}\pi _{K} & - q\hat{r}^{{\prime}}\pi _{K^{{\ast}}} & - q\hat{r}^{{\prime}}\pi _{q} & - q\hat{r}^{{\prime}}\pi _{q^{{\ast}}} \\ - q\hat{r}^{{\prime}}\pi _{K}^{{\ast}} & - q\hat{r}^{{\prime}}\pi _{K^{{\ast}}}^{{\ast}} &- q\hat{r}^{{\prime}}\pi _{q}^{{\ast}}&- q\hat{r}^{{\prime}}\pi _{q^{{\ast}}}^{{\ast}} \end{array} \right ]. }$$

By use of Lemma A.1, we see that the characteristic equation of J is written as

$$\displaystyle\begin{array}{rcl} \Gamma \left (\eta \right )& =& \det \left [\eta I - J\right ] {}\\ & =& \det \left [\begin{array}{cccc} \eta - (y_{K}^{1} -\delta +y_{p}^{1}\pi _{K})& - y_{p}^{1}\pi _{K} & - y_{p}^{1}\pi _{q} & - y_{p}^{1}\pi _{q^{{\ast}}} \\ - y_{p}^{1}\pi _{K} &\eta - (y_{K}^{1} -\delta +y_{p}^{1}\pi _{K})& - y_{p}^{1}\pi _{q^{{\ast}}}& - y_{p}^{1}\pi _{q} \\ q\hat{r}^{{\prime}}\pi _{K} & q\hat{r}^{{\prime}}\pi _{K} & \eta + q\hat{r}^{{\prime}}\pi _{q} & q\hat{r}^{{\prime}}\pi _{q^{{\ast}}} \\ q\hat{r}^{{\prime}}\pi _{K} & q\hat{r}^{{\prime}}\pi _{K} & q\hat{r}^{{\prime}}\pi _{q} & \eta + q\hat{r}^{{\prime}}\pi _{q} \end{array} \right ] {}\\ & =& \det \left [\begin{array}{cccc} \eta -\left (y_{K}^{1}-\delta \right )& 0 & \eta & 0 \\ 0 &\eta - (y_{K}^{1}-\delta )& 0 & \eta \\ q\hat{r}^{{\prime}}\pi _{K} & q\hat{r}^{{\prime}}\pi _{K} &\eta + q\hat{r}^{{\prime}}\pi _{q}& q\hat{r}^{{\prime}}\pi _{q^{{\ast}}} \\ q\hat{r}^{{\prime}}\pi _{K} & q\hat{r}^{{\prime}}\pi _{K} & q\hat{r}^{{\prime}}\pi _{q} &\eta + q\hat{r}^{{\prime}}\pi _{q} \end{array} \right ] {}\\ & =& \left [\eta -\left (y_{K}^{1}-\delta \right )\right ]\left [\eta +q\hat{r}^{{\prime}}(\pi _{ q} -\pi _{q^{{\ast}}})\right ]\xi \left (\eta \right )\text{,} {}\\ \end{array}$$

where η denotes the characteristic root of J and

$$\displaystyle{ \xi \left (\eta \right ) \equiv \eta ^{2} + \left [q\hat{r}^{{\prime}}\left (\pi _{ q} +\pi _{q^{{\ast}}}\right ) -\left (y_{K}^{1}-\delta \right ) - 2y_{ p}^{1}\pi _{ K}\right ]\eta - q\hat{r}^{{\prime}}\left (y_{ K}^{1}-\delta \right )\left (\pi _{ q} +\pi _{q^{{\ast}}}\right ). }$$

Our assumptions mean that \(\frac{a_{1}} {b_{1}} -\frac{a_{2}} {b_{2}} < 0\ \) and α 1 −α 2 > 0. Thus from (6.21a) we see that y K 1 −δ < 0. In addition, as to the partial derivatives of  \(\pi \left (.\right )\) function displayed above, we see that \(\pi _{q} -\pi _{q^{{\ast}}} = 1/\lambda \left (> 0\right )\). Hence, using \(\hat{r}\left (\,p\right ) \equiv a_{1}A_{1}k_{1}\left (\,p\right )^{\alpha _{1}-1}\), we obtain

$$\displaystyle{ \hat{r}^{{\prime}}\left (\pi _{ q} -\pi _{q^{{\ast}}}\right ) = a_{1}\left (a_{1} - 1\right )A_{1}\left (k_{1}\left (\,p\right )\right )^{a_{1}-2}\frac{k_{1}^{{\prime}}\left (\,p\right )} {\lambda }> 0. }$$

As a consequence, at least two roots of \(\Gamma \left (\eta \right ) = 0\) have negative real parts. Similarly, we find that

$$\displaystyle{ \pi _{q} +\pi _{q^{{\ast}}} = \frac{1} {\lambda +2p\lambda _{p}}, }$$

where

$$\displaystyle\begin{array}{rcl} \lambda _{p}& =& \frac{\partial } {\partial p}\left (1 +\bar{ m}\right )^{\frac{1} {\sigma } }\left [y^{2}\left (K,p\right ) + y^{2}\left (K^{{\ast}},p^{{\ast}}\right )\right ]^{-\frac{1} {\sigma } } {}\\ & =& -\frac{y_{p}^{2}} {\sigma } \left (1 +\bar{ m}\right )^{\frac{1} {\sigma } }\left [y^{2}\left (K,p\right ) + y^{2}\left (K^{{\ast}},p^{{\ast}}\right )\right ]^{-\frac{1} {\sigma } -1} <0. {}\\ \end{array}$$

Therefore, in the steady state equilibrium. the following holds:

$$\displaystyle{ \lambda +2p\lambda _{p} = \frac{1} {\sigma } \left [\sigma -\frac{py_{p}^{2}\left (K,p\right )} {y^{2}\left (K,p\right )} \right ]. }$$

Note that under our assumptions, it holds that \(y_{p}^{2}\left (K,p\right )> 0\). Suppose that σ is small enough to satisfy σ < py p 2∕y 2. Then, λ p + 2pλ p > 0 so that \(\pi _{q} +\pi _{q^{{\ast}}} <0\), which leads to

$$\displaystyle{ -q\hat{r}^{{\prime}}\left (y_{ K}^{1}-\delta \right )\left (\pi _{ q} +\pi _{q^{{\ast}}}\right ) <0. }$$

This means that \(\xi \left (\eta \right ) = 0\) has one positive and one negative root. As a result, \(\Gamma \left (\eta \right ) = 0\) has three stable roots. Hence, if σ is smaller than the price elasticity of supply function of consumption goods, then there locally exists a continuum of equilibrium paths converging to the steady state.

Now suppose that σ is larger than py p 2∕y 2. Then, we obtain \(\pi _{q} +\pi _{q^{{\ast}}}> 0\). Furthermore, it holds that

$$\displaystyle\begin{array}{rcl} -2y_{p}^{1}\pi _{ K}& =& -2y_{p}^{1}\left (- \frac{p\lambda _{K}} {\lambda +2p\lambda _{p}}\right ) {}\\ & =& -\frac{2py_{p}^{1}} {\lambda +2p\lambda _{p}} y_{K}^{2}\left [\frac{(1 +\bar{ m})^{\sigma ^{-1} }} {\sigma } \right ]\left (2y^{2}\right )^{-\sigma ^{-1}-1 }> 0, {}\\ \end{array}$$

because y p 1 < 0 and y K 2 > 0 under our assumptions. Consequently, the following inequalities are established:

$$\displaystyle\begin{array}{rcl} & -q\hat{r}^{{\prime}}\left (y_{K}^{1}-\delta \right )\left (\pi _{q} +\pi _{q^{{\ast}}}\right )> 0, & {}\\ & q\hat{r}^{{\prime}}\left (\pi _{q} +\pi _{q^{{\ast}}}\right ) -\left (y_{K}^{1}-\delta \right ) - 2y_{K}^{1}\pi _{K}> 0.& {}\\ \end{array}$$

These conditions mean that \(\xi \left (\eta \right ) = 0\) has two roots with negative real parts and, hence, all the roots of \(\Gamma \left (\eta \right ) = 0\) are stable ones. In sum, if \(\frac{a_{1}} {b_{1}} -\frac{a_{2}} {b_{2}} <0\) and α 1 −α 2 > 0, then the characteristic equation of the linearized system involves at least three stable roots, meaning that the converging path towards the steady state is locally indeterminate.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Mino, K. (2017). Indeterminacy in Open Economies. In: Growth and Business Cycles with Equilibrium Indeterminacy. Advances in Japanese Business and Economics, vol 13. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55609-1_6

Download citation

Publish with us

Policies and ethics