Skip to main content

Temporal Coding of Insulin Signaling

  • Chapter
  • 529 Accesses

Abstract

During recent years, it has become clearer that temporal patterns of stimuli and molecules are important in the regulation of cellular functions. For example, many hormones show distinct temporal patterns in vivo, which are important for homeostasis. One of the unique characteristics of cellular signaling pathways is that a common signaling pathway can selectively regulate multiple cellular functions depending on their temporal patterns. Therefore, one of the major advances in understanding the “pathogenic dysregulation of signaling” is to reveal the temporal coding mechanisms of signaling pathways related to pathogenesis. A systems biological approach combining experiments and computational analysis is necessary to address this issue. In this chapter, we will introduce the concept that the insulin-dependent AKT pathway uses temporal patterns multiplexing for selective regulation of signaling molecules and metabolites, which depend on their network structures and kinetics, using rat hepatoma Fao cells. These results represent a huge step forward in our understanding of insulin actions and type II diabetes mellitus .

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Boura-Halfon S, Zick Y (2009) Serine kinases of insulin receptor substrate proteins. Vitam Horm 80:313–349

    Article  PubMed  CAS  Google Scholar 

  • Brabant G, Prank K, Schijfl C (1992) Pulsatile patterns in hormone secretion. Trends Endocrinol Metab 3:183–190

    Article  PubMed  CAS  Google Scholar 

  • Bratusch-Marrain PR, Komjati M, Waldhausl WK (1986) Efficacy of pulsatile versus continuous insulin administration on hepatic glucose production and glucose utilization in type I diabetic humans. Diabetes 35:922–926

    Article  PubMed  CAS  Google Scholar 

  • Brown MS, Goldstein JL (2008) Selective versus total insulin resistance: a pathogenic paradox. Cell Metab 7:95–96

    Article  PubMed  CAS  Google Scholar 

  • Bruce DG, Chisholm DJ, Storlien LH, Kraegen EW (1988) Physiological importance of deficiency in early prandial insulin secretion in non-insulin-dependent diabetes. Diabetes 37:736–744

    Article  PubMed  CAS  Google Scholar 

  • Dolmetsch RE, Xu K, Lewis RS (1998) Calcium oscillations increase the efficiency and specificity of gene expression. Nature (Lond) 392:933–936

    Article  CAS  Google Scholar 

  • Downward J (1998) Mechanisms and consequences of activation of protein kinase B/Akt. Curr Opin Cell Biol 10:262–267

    Article  PubMed  CAS  Google Scholar 

  • Du J, Guan T, Zhang H, Xia Y, Liu F, Zhang Y (2008) Inhibitory crosstalk between ERK and AMPK in the growth and proliferation of cardiac fibroblasts. Biochem Biophys Res Commun 368:402–407

    Article  PubMed  CAS  Google Scholar 

  • Fujita KA, Toyoshima Y, Uda S, Ozaki Y, Kubota H, Kuroda S (2010) Decoupling of receptor and downstream signals in the Akt pathway by its low-pass filter characteristics. Sci Signal 3:ra56

    Google Scholar 

  • Kholodenko BN, Hancock JF, Kolch W (2010) Signalling ballet in space and time. Nat Rev Mol Cell Biol 11:414–426

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Koopmans SJ, Sips HCM, Krans HMJ, Radder JK (1996) Pulsatile intravenous insulin replacement in streptozotocin diabetic rats is more efficient than continuous delivery: effects on glycaemic control, insulin-mediated glucose metabolism and lipolysis. Diabetologia 39:391–400

    Article  PubMed  CAS  Google Scholar 

  • Kubota H, Noguchi R, Toyoshima Y, Ozaki Y, Uda S, Watanabe K, Ogawa W, Kuroda S (2012) Temporal coding of insulin action through multiplexing of the AKT pathway. Mol Cell 46:820–832

    Article  PubMed  CAS  Google Scholar 

  • Lawlor MA, Alessi DR (2001) PKB/Akt: a key mediator of cell proliferation, survival and insulin responses? J Cell Sci 114:2903–2910

    PubMed  CAS  Google Scholar 

  • Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP (2005) Phosphorylation and functional inactivation of TSC2 by Erk: implications for tuberous sclerosis and cancer pathogenesis. Cell 121:179–193

    Article  PubMed  CAS  Google Scholar 

  • Ma W, Trusina A, El-Samad H, Lim WA, Tang C (2009) Defining network topologies that can achieve biochemical adaptation. Cell 138:760–773

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Massimi M, Tomassini A, Sciubba F, Sobolev AP, Devirgiliis LC, Miccheli A (2012) Effects of resveratrol on HepG2 cells as revealed by (1)H-NMR based metabolic profiling. Biochim Biophys Acta 1820:1–8

    Article  PubMed  CAS  Google Scholar 

  • Noguchi R, Kubota H, Yugi K, Toyoshima Y, Komori Y, Soga T, Kuroda S (2013) The selective control of glycolysis, gluconeogenesis and glycogenesis by temporal insulin patterns. Mol Syst Biol 9:664

    Article  PubMed  PubMed Central  Google Scholar 

  • Nordlie RC, Foster JD, Lange AJ (1999) Regulation of glucose production by the liver. Annu Rev Nutr 19:379–406

    Article  PubMed  CAS  Google Scholar 

  • O’Rahilly S, Turner RG, Matthews DR (1988) Impaired pulsatile secretion of insulin in relatives of patients with non-insulin-dependent diabetes. N Engl J Med 318:1225–1230

    Article  PubMed  Google Scholar 

  • Ozaki Y-I, Sasagawa S, Kuroda S (2005) Dynamic characteristics of transient responses. J Biochem (Tokyo) 137:659–663

    Article  CAS  Google Scholar 

  • Polonsky KS (1988) Twenty-four-hour profiles and pulsatile patterns of insulin secretion in normal and obese subjects. J Clin Invest 81:442–448

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Saltiel AR, Kahn CR (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature (Lond) 414:799–806

    Article  CAS  Google Scholar 

  • Sasagawa S, Ozaki Y, Fujita K, Kuroda S (2005) Prediction and validation of the distinct dynamics of transient and sustained ERK activation. Nat Cell Biol 7:365–373

    Article  PubMed  CAS  Google Scholar 

  • Scribner DM, Witowski NE, Mulier KE, Lusczek ER, Wasiluk KR, Beilman GJ (2010) Liver metabolomic changes identify biochemical pathways in hemorrhagic shock. J Surg Res 164:e131–e139

    Article  PubMed  CAS  Google Scholar 

  • Shoval O, Alon U (2010) SnapShot: network motifs. Cell 143:326–326.e321

    Article  PubMed  Google Scholar 

  • Sindelar DK, Chu CA, Neal DW, Cherrington AD (1997) Interaction of equal increments in arterial and portal vein insulin on hepatic glucose production in the dog. Am J Physiol 273:E972–E980

    PubMed  CAS  Google Scholar 

  • Skurat AV, Roach PJ (1995) Phosphorylation of sites 3a and 3b (Ser640 and Ser644) in the control of rabbit muscle glycogen synthase. J Biol Chem 270:12491–12497

    Article  PubMed  CAS  Google Scholar 

  • Soga T, Baran R, Suematsu M, Ueno Y, Ikeda S, Sakurakawa T, Kakazu Y, Ishikawa T, Robert M, Nishioka T et al (2006) Differential metabolomics reveals ophthalmic acid as an oxidative stress biomarker indicating hepatic glutathione consumption. J Biol Chem 281:16768–16776

    Article  PubMed  CAS  Google Scholar 

  • Toyoshima Y, Kakuda H, Fujita KA, Uda S, Kuroda S (2012) Sensitivity control through attenuation of signal transfer efficiency by negative regulation of cellular signalling. Nat Commun 3:743

    Article  PubMed  Google Scholar 

  • Wang Y, Roach PJ (1993) Inactivation of rabbit muscle glycogen synthase by glycogen synthase kinase-3. Dominant role of the phosphorylation of Ser-640 (site-3a). J Biol Chem 268:23876–23880

    PubMed  CAS  Google Scholar 

  • Watanabe C, Seino Y, Miyahira H, Yamamoto M, Fukami A, Ozaki N, Takagishi Y, Sato J, Fukuwatari T, Shibata K et al (2012) Remodeling of hepatic metabolism and hyperaminoacidemia in mice deficient in proglucagon-derived peptides. Diabetes 61:74–84

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Whiteman EL, Cho H, Birnbaum MJ (2002) Role of Akt/protein kinase B in metabolism. Trend Endocrinol Metab 13:444–451

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Kubota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Kubota, H., Kuroda, S. (2015). Temporal Coding of Insulin Signaling. In: Inoue, Ji., Takekawa, M. (eds) Protein Modifications in Pathogenic Dysregulation of Signaling. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55561-2_7

Download citation

Publish with us

Policies and ethics