Skip to main content

Protein Modifications Pace the Circadian Oscillation of Biological Clocks

  • Chapter
Protein Modifications in Pathogenic Dysregulation of Signaling

Abstract

In modern societies, many people have trouble with their sleep, mental health, and metabolic status, which show daily rhythms. The daily rhythms are also observed in the risk of diseases such as cardiovascular disease, allergic reaction, and asthma. Increasingly, studies report time-of-the-day-dependent changes in both the medicinal benefits of drugs and their undesirable side effects. Search of the best daily timing for such drug administration is very important, being emphasized as chronopharmacology or chronotherapy. These rhythms in the benefits and the risks are based on the circadian clockwork that is generated by transcriptional–translational negative feedback loops of the so-called clock genes. The time measuring system absolutely requires post-translational modifications of the clock gene products, that is, clock proteins. Clock protein modifications control many aspects of the circadian clock such as stability, cellular localization profiles, transcriptional activity, and protein–protein interactions. In this chapter, we present an overview of recent molecular and genetic studies by focusing on a series of the post-translational modifications of clock proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akashi M, Tsuchiya Y, Yoshino T, Nishida E (2002) Control of intracellular dynamics of mammalian period proteins by casein kinase I epsilon (CKIepsilon) and CKIdelta in cultured cells. Mol Cell Biol 22:1693–1703

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Albrecht U, Sun ZS, Eichele G, Lee CC (1997) A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell 91:1055–1064

    Article  CAS  PubMed  Google Scholar 

  • Antoch M, Song E, Chang A, Vitaterna M, Zhao Y, Wilsbacher L, Sangoram A, King D, Pinto L, Takahashi J (1997) Functional identification of the mouse circadian Clock gene by transgenic BAC rescue. Cell 89:655–667

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Aschoff J (1960) Exogenous and endogenous components in circadian rhythms. Cold Spring Harbor Symp Quant Biol 25:11–28

    Article  CAS  PubMed  Google Scholar 

  • Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F, Mostoslavsky R, Alt F, Schibler U (2008) SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134:317–328

    Article  CAS  PubMed  Google Scholar 

  • Balsalobre A, Damiola F, Schibler U (1998) A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93:929–937

    Article  CAS  PubMed  Google Scholar 

  • Bass J, Takahashi JS (2010) Circadian integration of metabolism and energetics. Science 330:1349–1354

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Busino L, Bassermann F, Maiolica A, Lee C, Nolan PM, Godinho SI, Draetta GF, Pagano M (2007) SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins. Science 316:900–904

    Article  CAS  PubMed  Google Scholar 

  • Cardone L, Hirayama J, Giordano F, Tamaru T, Palvimo J, Sassone-Corsi P (2005) Circadian clock control by SUMOylation of BMAL1. Science 309:1390–1394

    Article  CAS  PubMed  Google Scholar 

  • Cardozo T, Pagano M (2004) The SCF ubiquitin ligase: insights into a molecular machine. Nat Rev Mol Cell Biol 5:739–751

    Article  CAS  PubMed  Google Scholar 

  • Cashmore AR, Jarillo JA, Wu YJ, Liu D (1999) Cryptochromes: blue light receptors for plants and animals. Science 284:760–765

    Article  CAS  PubMed  Google Scholar 

  • Chiu JC, Vanselow JT, Kramer A, Edery I (2008) The phospho-occupancy of an atypical SLIMB-binding site on PERIOD that is phosphorylated by DOUBLETIME controls the pace of the clock. Genes Dev 22:1758–1772

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dardente H, Mendoza J, Fustin JM, Challet E, Hazlerigg DG (2008) Implication of the F-Box Protein FBXL21 in circadian pacemaker function in mammals. PLoS One 3:e3530

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Doi M, Hirayama J, Sassone-Corsi P (2006) Circadian regulator CLOCK is a histone acetyltransferase. Cell 125:497–508

    Article  CAS  PubMed  Google Scholar 

  • Dunlap J (1999) Molecular bases for circadian clocks. Cell 96:271–290

    Article  CAS  PubMed  Google Scholar 

  • Durgan DJ, Pat BM, Laczy B, Bradley JA, Tsai JY, Grenett MH, Ratcliffe WF, Brewer RA, Nagendran J, Villegas-Montoya C et al (2011) O-GlcNAcylation, novel post-translational modification linking myocardial metabolism and cardiomyocyte circadian clock. J Biol Chem 286:44606–44619

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ebisawa T, Uchiyama M, Kajimura N, Mishima K, Kamei Y, Katoh M, Watanabe T, Sekimoto M, Shibui K, Kim K et al (2001) Association of structural polymorphisms in the human period3 gene with delayed sleep phase syndrome. EMBO Rep 2:342–346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eide E, Vielhaber E, Hinz W, Virshup D (2002) The circadian regulatory proteins BMAL1 and cryptochromes are substrates of casein kinase Iepsilon. J Biol Chem 277:17248–17254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eide E, Woolf M, Kang H, Woolf P, Hurst W, Camacho F, Vielhaber E, Giovanni A, Virshup D (2005) Control of mammalian circadian rhythm by CKIepsilon-regulated proteasome-mediated PER2 degradation. Mol Cell Biol 25:2795–2807

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Enoki R, Kuroda S, Ono D, Hasan MT, Ueda T, Honma S, Honma K (2012) Topological specificity and hierarchical network of the circadian calcium rhythm in the suprachiasmatic nucleus. Proc Natl Acad Sci U S A 109:21498–21503

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Etchegaray JP, Lee C, Wade PA, Reppert SM (2003) Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature (Lond) 421:177–182

    Article  CAS  Google Scholar 

  • Fotaki V, Dierssen M, Alcántara S, MartĂ­nez S, MartĂ­ E, Casas C, Visa J, Soriano E, Estivill X, ArbonĂ©s ML (2002) Dyrk1A haploinsufficiency affects viability and causes developmental delay and abnormal brain morphology in mice. Mol Cell Biol 22:6636–6647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gallego M, Virshup D (2007) Post-translational modifications regulate the ticking of the circadian clock. Nat Rev Mol Cell Biol 8:139–148

    Article  CAS  PubMed  Google Scholar 

  • Gallego M, Eide EJ, Woolf MF, Virshup DM, Forger DB (2006a) An opposite role for tau in circadian rhythms revealed by mathematical modeling. Proc Natl Acad Sci U S A 103:10618–10623

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gallego M, Kang H, Virshup D (2006b) Protein phosphatase 1 regulates the stability of the circadian protein PER2. Biochem J 399:169–175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gekakis N, Staknis D, Nguyen H, Davis F, Wilsbacher L, King D, Takahashi J, Weitz C (1998) Role of the CLOCK protein in the mammalian circadian mechanism. Science 280:1564–1569

    Article  CAS  PubMed  Google Scholar 

  • Godinho SI, Maywood ES, Shaw L, Tucci V, Barnard AR, Busino L, Pagano M, Kendall R, Quwailid MM, Romero MR et al (2007) The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period. Science 316:897–900

    Article  CAS  PubMed  Google Scholar 

  • Gossan NC, Zhang F, Guo B, Jin D, Yoshitane H, Yao A, Glossop N, Zhang YQ, Fukada Y, Meng QJ (2014) The E3 ubiquitin ligase UBE3A is an integral component of the molecular circadian clock through regulating the BMAL1 transcription factor. Nucleic Acids Res 42:5765–5775

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grima B, Lamouroux A, ChĂ©lot E, Papin C, Limbourg-Bouchon B, Rouyer F (2002) The F-box protein slimb controls the levels of clock proteins period and timeless. Nature (Lond) 420:178–182

    Article  CAS  Google Scholar 

  • Guimera J, Casas C, Estivill X, Pritchard M (1999) Human minibrain homologue (MNBH/DYRK1): characterization, alternative splicing, differential tissue expression, and overexpression in Down syndrome. Genomics 57:407–418

    Article  CAS  PubMed  Google Scholar 

  • Harada Y, Sakai M, Kurabayashi N, Hirota T, Fukada Y (2005) Ser-557-phosphorylated mCRY2 is degraded upon synergistic phosphorylation by glycogen synthase kinase-3β. J Biol Chem 280:31714–31721

    Article  CAS  PubMed  Google Scholar 

  • Hirano A, Yumimoto K, Tsunematsu R, Matsumoto M, Oyama M, Kozuka-Hata H, Nakagawa T, Lanjakornsiripan D, Nakayama KI, Fukada Y (2013) FBXL21 regulates oscillation of the circadian clock through ubiquitination and stabilization of cryptochromes. Cell 152:1106–1118

    Article  CAS  PubMed  Google Scholar 

  • Hirano A, Kurabayashi N, Nakagawa T, Shioi G, Todo T, Hirota T, Fukada Y (2014) In vivo role of phosphorylation of cryptochrome 2 in the mouse circadian clock. Mol Cell Biol 34:4464–4473

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hirayama J, Sahar S, Grimaldi B, Tamaru T, Takamatsu K, Nakahata Y, Sassone-Corsi P (2007) CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature (Lond) 450:1086–1090

    Article  CAS  Google Scholar 

  • Hirota T, Fukada Y (2004) Resetting mechanism of central and peripheral circadian clocks in mammals. Zool Sci 21:359–368

    Article  PubMed  Google Scholar 

  • Huang N, Chelliah Y, Shan Y, Taylor CA, Yoo SH, Partch C, Green CB, Zhang H, Takahashi JS (2012) Crystal structure of the heterodimeric CLOCK:BMAL1 transcriptional activator complex. Science 337:189–194

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ikeda M, Nomura M (1997) cDNA cloning and tissue-specific expression of a novel basic helix-loop-helix/PAS protein (BMAL1) and identification of alternatively spliced variants with alternative translation initiation site usage. Biochem Biophys Res Commun 233:258–264

    Article  CAS  PubMed  Google Scholar 

  • Ikeda M, Sugiyama T, Wallace CS, Gompf HS, Yoshioka T, Miyawaki A, Allen CN (2003) Circadian dynamics of cytosolic and nuclear Ca2+ in single suprachiasmatic nucleus neurons. Neuron 38:253–263

    Article  CAS  PubMed  Google Scholar 

  • Isojima Y, Nakajima M, Ukai H, Fujishima H, Yamada R, Masumoto K, Kiuchi R, Ishida M, Ukai-Tadenuma M, Minami Y et al (2009) CKIepsilon/delta-dependent phosphorylation is a temperature-insensitive, period-determining process in the mammalian circadian clock. Proc Natl Acad Sci U S A 106:15744–15749

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jakubcakova V, Oster H, Tamanini F, Cadenas C, Leitges M, van der Horst GT, Eichele G (2007) Light entrainment of the mammalian circadian clock by a PRKCA-dependent posttranslational mechanism. Neuron 54:831–843

    Article  CAS  PubMed  Google Scholar 

  • Jin J, Cardozo T, Lovering RC, Elledge SJ, Pagano M, Harper JW (2004) Systematic analysis and nomenclature of mammalian F-box proteins. Genes Dev 18:2573–2580

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jones CR, Campbell SS, Zone SE, Cooper F, DeSano A, Murphy PJ, Jones B, Czajkowski L, Ptácek LJ (1999) Familial advanced sleep-phase syndrome: a short-period circadian rhythm variant in humans. Nat Med 5:1062–1065

    Article  CAS  PubMed  Google Scholar 

  • King D, Zhao Y, Sangoram A, Wilsbacher L, Tanaka M, Antoch M, Steeves T, Vitaterna M, Kornhauser J, Lowrey P et al (1997) Positional cloning of the mouse circadian clock gene. Cell 89:641–653

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kloss B, Price JL, Saez L, Blau J, Rothenfluh A, Wesley CS, Young MW (1998) The Drosophila clock gene double-time encodes a protein closely related to human casein kinase Iepsilon. Cell 94:97–107

    Article  CAS  PubMed  Google Scholar 

  • Ko HW, Jiang J, Edery I (2002) Role for Slimb in the degradation of Drosophila period protein phosphorylated by Doubletime. Nature (Lond) 420:673–678

    Article  CAS  Google Scholar 

  • Kon N, Yoshikawa T, Honma S, Yamagata Y, Yoshitane H, Shimizu K, Sugiyama Y, Hara C, Kameshita I, Honma K et al (2014) CaMKII is essential for the cellular clock and coupling between morning and evening behavioral rhythms. Genes Dev 28:1101–1110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kondratov R, Chernov M, Kondratova A, Gorbacheva V, Gudkov A, Antoch M (2003) BMAL1-dependent circadian oscillation of nuclear CLOCK: posttranslational events induced by dimerization of transcriptional activators of the mammalian clock system. Genes Dev 17:1921–1932

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kondratov R, Kondratova A, Lee C, Gorbacheva V, Chernov M, Antoch M (2006) Post-translational regulation of circadian transcriptional CLOCK(NPAS2)/BMAL1 complex by CRYPTOCHROMES. Cell Cycle 5:890–895

    Article  CAS  PubMed  Google Scholar 

  • Kuan C, Yang D, Samanta Roy D, Davis R, Rakic P, Flavell R (1999) The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron 22:667–676

    Article  CAS  PubMed  Google Scholar 

  • Kume K, Zylka M, Sriram S, Shearman L, Weaver D, Jin X, Maywood E, Hastings M, Reppert S (1999) mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98:193–205

    Article  CAS  PubMed  Google Scholar 

  • Kunieda T, Minamino T, Miura K, Katsuno T, Tateno K, Miyauchi H, Kaneko S, Bradfield CA, FitzGerald GA, Komuro I (2008) Reduced nitric oxide causes age-associated impairment of circadian rhythmicity. Circ Res 102:607–614

    Article  CAS  PubMed  Google Scholar 

  • Kurabayashi N, Sanada K (2013) Increased dosage of DYRK1A and DSCR1 delays neuronal differentiation in neocortical progenitor cells. Genes Dev 27:2708–2721

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kurabayashi N, Hirota T, Harada Y, Sakai M, Fukada Y (2006) Phosphorylation of mCRY2 at Ser557 in the hypothalamic suprachiasmatic nucleus of the mouse. Chronobiol Int 23:129–134

    Article  CAS  PubMed  Google Scholar 

  • Kurabayashi N, Hirota T, Sakai M, Sanada K, Fukada Y (2010) DYRK1A and GSK-3β a dual kinase mechanism directing proteasomal degradation of CRY2 for circadian timekeeping. Mol Cell Biol 30:1757–1768

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kwon I, Lee J, Chang S, Jung N, Lee B, Son G, Kim K, Lee K (2006) BMAL1 shuttling controls transactivation and degradation of the CLOCK/BMAL1 heterodimer. Mol Cell Biol 26:7318–7330

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee C, Etchegaray J, Cagampang F, Loudon A, Reppert S (2001) Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107:855–867

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Lee Y, Lee M, Park E, Kang S, Chung C, Lee K, Kim K (2008) Dual modification of BMAL1 by SUMO2/3 and ubiquitin promotes circadian activation of the CLOCK/BMAL1 complex. Mol Cell Biol 28:6056–6065

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li MD, Ruan HB, Hughes ME, Lee JS, Singh JP, Jones SP, Nitabach MN, Yang X (2013) O-GlcNAc signaling entrains the circadian clock by inhibiting BMAL1/CLOCK ubiquitination. Cell Metab 17:303–310

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lowrey PL, Shimomura K, Antoch MP, Yamazaki S, Zemenides PD, Ralph MR, Menaker M, Takahashi JS (2000) Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science 288:483–492

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lundkvist GB, Kwak Y, Davis EK, Tei H, Block GD (2005) A calcium flux is required for circadian rhythm generation in mammalian pacemaker neurons. J Neurosci 25:7682–7686

    Article  CAS  PubMed  Google Scholar 

  • Martin J, Mohit A, Miller C (1996) Developmental expression in the mouse nervous system of the p493F12 SAP kinase. Brain Res Mol Brain Res 35:47–57

    Article  CAS  PubMed  Google Scholar 

  • Meng QJ, Logunova L, Maywood ES, Gallego M, Lebiecki J, Brown TM, Sládek M, Semikhodskii AS, Glossop NR, Piggins HD et al (2008) Setting clock speed in mammals: the CK1 epsilon tau mutation in mice accelerates circadian pacemakers by selectively destabilizing PERIOD proteins. Neuron 58:78–88

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meng QJ, Maywood ES, Bechtold DA, Lu WQ, Li J, Gibbs JE, DuprĂ© SM, Chesham JE, Rajamohan F, Knafels J et al (2010) Entrainment of disrupted circadian behavior through inhibition of casein kinase 1 (CK1) enzymes. Proc Natl Acad Sci U S A 107:15240–15245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D, Guarente L, Sassone-Corsi P (2008) The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134:329–340

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nitabach MN, Holmes TC, Blau J (2005) Membranes, ions, and clocks: testing the Njus-Sulzman-Hastings model of the circadian oscillator. Methods Enzymol 393:682–693

    Article  CAS  PubMed  Google Scholar 

  • Okui M, Ide T, Morita K, Funakoshi E, Ito F, Ogita K, Yoneda Y, Kudoh J, Shimizu N (1999) High-level expression of the Mnb/Dyrk1A gene in brain and heart during rat early development. Genomics 62:165–171

    Article  CAS  PubMed  Google Scholar 

  • Price JL, Blau J, Rothenfluh A, Abodeely M, Kloss B, Young MW (1998) Double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell 94:83–95

    Article  CAS  PubMed  Google Scholar 

  • Ralph MR, Menaker M (1988) A mutation of the circadian system in golden hamsters. Science 241:1225–1227

    Article  CAS  PubMed  Google Scholar 

  • Ralph M, Foster R, Davis F, Menaker M (1990) Transplanted suprachiasmatic nucleus determines circadian period. Science 247:975–978

    Article  CAS  PubMed  Google Scholar 

  • Reischl S, Vanselow K, Westermark P, Thierfelder N, Maier B, Herzel H, Kramer A (2007) β-TrCP1-mediated degradation of PERIOD2 is essential for circadian dynamics. J Biol Rhythms 22:375–386

    Article  CAS  PubMed  Google Scholar 

  • Ripperger J, Schibler U (2006) Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nat Genet 38:369–374

    Article  CAS  PubMed  Google Scholar 

  • Robles MS, Boyault C, Knutti D, Padmanabhan K, Weitz CJ (2010) Identification of RACK1 and protein kinase Cα as integral components of the mammalian circadian clock. Science 327:463–466

    Article  CAS  PubMed  Google Scholar 

  • Sahar S, Zocchi L, Kinoshita C, Borrelli E, Sassone-Corsi P (2010) Regulation of BMAL1 protein stability and circadian function by GSK3β-mediated phosphorylation. PLoS One 5:e8561

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sanada K, Okano T, Fukada Y (2002) Mitogen-activated protein kinase phosphorylates and negatively regulates basic helix-loop-helix-PAS transcription factor BMAL1. J Biol Chem 277:267–271

    Article  CAS  PubMed  Google Scholar 

  • Sanada K, Harada Y, Sakai M, Todo T, Fukada Y (2004) Serine phosphorylation of mCRY1 and mCRY2 by mitogen-activated protein kinase. Genes Cells 9:697–708

    Article  CAS  PubMed  Google Scholar 

  • Scoma HD, Humby M, Yadav G, Zhang Q, Fogerty J, Besharse JC (2011) The de-ubiquitinylating enzyme, USP2, is associated with the circadian clockwork and regulates its sensitivity to light. PLoS One 6:e25382

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shearman LP, Zylka MJ, Weaver DR, Kolakowski LF, Reppert SM (1997) Two period homologs: circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron 19:1261–1269

    Article  CAS  PubMed  Google Scholar 

  • Shim H, Kim H, Lee J, Son G, Cho S, Oh T, Kang S, Seen D, Lee K, Kim K (2007) Rapid activation of CLOCK by Ca2+-dependent protein kinase C mediates resetting of the mammalian circadian clock. EMBO Rep 8:366–371

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shirogane T, Jin J, Ang XL, Harper JW (2005) SCFβ-TRCP controls clock-dependent transcription via casein kinase 1-dependent degradation of the mammalian period-1 (Per1) protein. J Biol Chem 280:26863–26872

    Article  CAS  PubMed  Google Scholar 

  • Siepka SM, Yoo SH, Park J, Song W, Kumar V, Hu Y, Lee C, Takahashi JS (2007) Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression. Cell 129:1011–1023

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Silver R, LeSauter J, Tresco PA, Lehman MN (1996) A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature (Lond) 382:810–813

    Article  CAS  Google Scholar 

  • Spengler M, Kuropatwinski K, Schumer M, Antoch M (2009) A serine cluster mediates BMAL1-dependent CLOCK phosphorylation and degradation. Cell Cycle 8:4138–4146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stratmann M, Suter DM, Molina N, Naef F, Schibler U (2012) Circadian Dbp transcription relies on highly dynamic BMAL1-CLOCK interaction with E boxes and requires the proteasome. Mol Cell 48:277–287

    Article  CAS  PubMed  Google Scholar 

  • Sun ZS, Albrecht U, Zhuchenko O, Bailey J, Eichele G, Lee CC (1997) RIGUI, a putative mammalian ortholog of the Drosophila period gene. Cell 90:1003–1011

    Article  CAS  PubMed  Google Scholar 

  • Susaki EA, Stelling J, Ueda HR (2010) Challenges in synthetically designing mammalian circadian clocks. Curr Opin Biotechnol 21:556–565

    Article  CAS  PubMed  Google Scholar 

  • Takano A, Shimizu K, Kani S, Buijs R, Okada M, Nagai K (2000) Cloning and characterization of rat casein kinase 1epsilon. FEBS Lett 477:106–112

    Article  CAS  PubMed  Google Scholar 

  • Takano A, Isojima Y, Nagai K (2004a) Identification of mPer1 phosphorylation sites responsible for the nuclear entry. J Biol Chem 279:32578–32585

    Article  CAS  PubMed  Google Scholar 

  • Takano A, Uchiyama M, Kajimura N, Mishima K, Inoue Y, Kamei Y, Kitajima T, Shibui K, Katoh M, Watanabe T et al (2004b) A missense variation in human casein kinase I epsilon gene that induces functional alteration and shows an inverse association with circadian rhythm sleep disorders. Neuropsychopharmacology 29:1901–1909

    Article  CAS  PubMed  Google Scholar 

  • Takumi T, Matsubara C, Shigeyoshi Y, Taguchi K, Yagita K, Maebayashi Y, Sakakida Y, Okumura K, Takashima N, Okamura H (1998a) A new mammalian period gene predominantly expressed in the suprachiasmatic nucleus. Genes Cells 3:167–176

    Article  CAS  PubMed  Google Scholar 

  • Takumi T, Taguchi K, Miyake S, Sakakida Y, Takashima N, Matsubara C, Maebayashi Y, Okumura K, Takekida S, Yamamoto S et al (1998b) A light-independent oscillatory gene mPer3 in mouse SCN and OVLT. EMBO J 17:4753–4759

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tamaru T, Isojima Y, van der Horst G, Takei K, Nagai K, Takamatsu K (2003) Nucleocytoplasmic shuttling and phosphorylation of BMAL1 are regulated by circadian clock in cultured fibroblasts. Genes Cells 8:973–983

    Article  CAS  PubMed  Google Scholar 

  • Tamaru T, Hirayama J, Isojima Y, Nagai K, Norioka S, Takamatsu K, Sassone-Corsi P (2009) CK2α phosphorylates BMAL1 to regulate the mammalian clock. Nat Struct Mol Biol 16:446–448

    Article  CAS  PubMed  Google Scholar 

  • Tei H, Okamura H, Shigeyoshi Y, Fukuhara C, Ozawa R, Hirose M, Sakaki Y (1997) Circadian oscillation of a mammalian homologue of the Drosophila period gene. Nature (Lond) 389:512–516

    Article  CAS  Google Scholar 

  • Toh K, Jones C, He Y, Eide E, Hinz W, Virshup D, Ptácek L, Fu Y (2001) An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291:1040–1043

    Article  CAS  PubMed  Google Scholar 

  • Tsuchiya Y, Akashi M, Matsuda M, Goto K, Miyata Y, Node K, Nishida E (2009) Involvement of the protein kinase CK2 in the regulation of mammalian circadian rhythms. Sci Signal 2:ra26

    Google Scholar 

  • Uchida Y, Osaki T, Yamasaki T, Shimomura T, Hata S, Horikawa K, Shibata S, Todo T, Hirayama J, Nishina H (2012) Involvement of stress kinase mitogen-activated protein kinase kinase 7 in regulation of mammalian circadian clock. J Biol Chem 287:8318–8326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ueda H, Hayashi S, Chen W, Sano M, Machida M, Shigeyoshi Y, Iino M, Hashimoto S (2005) System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat Genet 37:187–192

    Article  CAS  PubMed  Google Scholar 

  • Ukai-Tadenuma M, Yamada RG, Xu H, Ripperger JA, Liu AC, Ueda HR (2011) Delay in feedback repression by cryptochrome 1 is required for circadian clock function. Cell 144:268–281

    Article  CAS  PubMed  Google Scholar 

  • van der Horst GT, Muijtjens M, Kobayashi K, Takano R, Kanno S, Takao M, de Wit J, Verkerk A, Eker AP, van Leenen D et al (1999) Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature (Lond) 398:627–630

    Article  Google Scholar 

  • Vanselow K, Vanselow J, Westermark P, Reischl S, Maier B, Korte T, Herrmann A, Herzel H, Schlosser A, Kramer A (2006) Differential effects of PER2 phosphorylation: molecular basis for the human familial advanced sleep phase syndrome (FASPS). Genes Dev 20:2660–2672

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vielhaber E, Eide E, Rivers A, Gao Z, Virshup D (2000) Nuclear entry of the circadian regulator mPER1 is controlled by mammalian casein kinase I epsilon. Mol Cell Biol 20:4888–4899

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vielhaber E, Duricka D, Ullman K, Virshup D (2001) Nuclear export of mammalian PERIOD proteins. J Biol Chem 276:45921–45927

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vitaterna M, King D, Chang A, Kornhauser J, Lowrey P, McDonald J, Dove W, Pinto L, Turek F, Takahashi J (1994) Mutagenesis and mapping of a mouse gene, clock, essential for circadian behavior. Science 264:719–725

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vitaterna MH, Selby CP, Todo T, Niwa H, Thompson C, Fruechte EM, Hitomi K, Thresher RJ, Ishikawa T, Miyazaki J et al (1999) Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2. Proc Natl Acad Sci U S A 96:12114–12119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu Y, Padiath Q, Shapiro R, Jones C, Wu S, Saigoh N, Saigoh K, Ptácek L, Fu Y (2005) Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature (Lond) 434:640–644

    Article  CAS  Google Scholar 

  • Xu Y, Toh K, Jones C, Shin J, Fu Y, Ptácek L (2007) Modeling of a human circadian mutation yields insights into clock regulation by PER2. Cell 128:59–70

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yagita K, Yamaguchi S, Tamanini F, van Der Horst G, Hoeijmakers J, Yasui A, Loros J, Dunlap J, Okamura H (2000) Dimerization and nuclear entry of mPER proteins in mammalian cells. Genes Dev 14:1353–1363

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yagita K, Tamanini F, Yasuda M, Hoeijmakers J, van der Horst G, Okamura H (2002) Nucleocytoplasmic shuttling and mCRY-dependent inhibition of ubiquitylation of the mPER2 clock protein. EMBO J 21:1301–1314

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamagata Y, Kobayashi S, Umeda T, Inoue A, Sakagami H, Fukaya M, Watanabe M, Hatanaka N, Totsuka M, Yagi T et al (2009) Kinase-dead knock-in mouse reveals an essential role of kinase activity of Ca2+/calmodulin-dependent protein kinase IIα in dendritic spine enlargement, long-term potentiation, and learning. J Neurosci 29:7607–7618

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Kuan C, Whitmarsh A, RincĂłn M, Zheng T, Davis R, Rakic P, Flavell R (1997) Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature (Lond) 389:865–870

    Article  CAS  Google Scholar 

  • Yoo SH, Mohawk JA, Siepka SM, Shan Y, Huh SK, Hong HK, Kornblum I, Kumar V, Koike N, Xu M et al (2013) Competing E3 ubiquitin ligases govern circadian periodicity by degradation of CRY in nucleus and cytoplasm. Cell 152:1091–1105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshitane H, Takao T, Satomi Y, Du N, Okano T, Fukada Y (2009) Roles of CLOCK phosphorylation in suppression of E-box-dependent transcription. Mol Cell Biol 29:3675–3686

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshitane H, Honma S, Imamura K, Nakajima H, Nishide SY, Ono D, Kiyota H, Shinozaki N, Matsuki H, Wada N et al (2012) JNK regulates the photic response of the mammalian circadian clock. EMBO Rep 13:455–461

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshitane H, Ozaki H, Terajima H, Du NH, Suzuki Y, Fujimori T, Kosaka N, Shimba S, Sugano S, Takagi T et al (2014) CLOCK-controlled polyphonic regulation of circadian rhythms through canonical and noncanonical E-boxes. Mol Cell Biol 34:1776–1787

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao W, Malinin N, Yang F, Staknis D, Gekakis N, Maier B, Reischl S, Kramer A, Weitz C (2007) CIPC is a mammalian circadian clock protein without invertebrate homologues. Nat Cell Biol 9:268–275

    Article  CAS  PubMed  Google Scholar 

  • Zylka MJ, Shearman LP, Weaver DR, Reppert SM (1998) Three period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron 20:1103–1110

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshitaka Fukada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Yoshitane, H., Fukada, Y. (2015). Protein Modifications Pace the Circadian Oscillation of Biological Clocks. In: Inoue, Ji., Takekawa, M. (eds) Protein Modifications in Pathogenic Dysregulation of Signaling. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55561-2_16

Download citation

Publish with us

Policies and ethics