Skip to main content

Chiral Recognition by Inclusion Crystals of Amino-Acid Derivatives Having Trityl Groups

  • Chapter
Advances in Organic Crystal Chemistry

Abstract

Enantioselective inclusion of racemic guests into chiral hosts can be used for enantiomeric resolution. We propose new crystalline host designs consisting of amino-acid derivatives having trityl groups. We first show that an N,N′-ditrityl amino amide host includes N-phenyl-2-halobutanamides (halogens: Cl and Br) in the host cavity to form inclusion crystals with high enantioselectivities (82–83 % ee, S-form). We then show that salts between N-trityl amino acids and tert-butylamine include several alcohols and that racemic 1-chloro-2-propanol is resolved to give the S-enriched sample of 69 % ee. In both of these kinds of hosts, trityl groups serve as crystal engineering tools for constructing inclusion crystals. The installation of trityl groups into amino-acid derivatives breaks their inherent hydrogen bonds, and the inclusion of guest molecules (amides or alcohols) compensates the loss of hydrogen bonds. Single-crystal X-ray analysis has elucidated these inclusion cavities and host-guest interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Siedlecka, Tetrahedron. 69, 6331–6363 (2013). (b) F. Faigel, E. Fogassy, M. Nógrádi, E. Pálovics, J. Schindler, Tetrahedron: Asymmetry. 19, 519–536 (2008). (c) E. Fogassy, M. Nógrádi, D. Kozma, G. Egri, E. Pálovics, V. Kiss, Org. Biomol. Chem. 4, 3011–3030 (2006)

    Google Scholar 

  2. E. Weber (ed.), Molecular Inclusion and Molecular Recognition-Clathrates I and I, vols. 140 and 149. (Springer, Berlin, 1987/1988)

    Google Scholar 

  3. F. Toda, R. Bishop (eds.), Separations and Reactions in Organic Supramolecular Chemistry: Perspectives in Supramolecular Chemistry, vol. 8 (Wiley, Chichester, 2004)

    Google Scholar 

  4. Enantiomer Separation: Fundamentals and Practical Methods (Kluwer Academic Publishers, Dordrecht Boston London, 2004), pp. 73–102

    Google Scholar 

  5. (a) M. Akazome, K. Senda, K. Ogura, J. Org. Chem. 67, 8885–8889 (2002). (b) M. Akazome, T. Takahashi, R. Sonobe, K. Ogura, Tetrahedron. 58, 8857–8861 (2002). (c) M. Akazome, T. Takahashi, R. Sonobe, K. Ogura, Supramol. Chem. 13, 109–136 (2001). (d) M. Akazome, Y. Yanagita, R. Sonobe, K. Ogura, Bull. Chem. Soc. Jp. 70, 2823–2827 (1997). (e) M. Akazome, A. Sumikawa, R. Sonobe, K. Ogura, Chem. Lett., 995–996 (1996).

    Google Scholar 

  6. (a) M. Akazome, S. Toma, T. Horiguchi, K. Megumi, S. Matsumoto, Tetrahedron. 67, 2844–2848 (2011). (b) M. Akazome, A. Doba, S. Matsumoto, K. Ogura, J. Org. Chem. 75, 660–665 (2010). (c) M. Akazome, A. Hirabayashi, K. Senda, K. Ogura, Tetrahedron. 63, 9933–9938 (2007). (d) M. Akazome, A. Hirabayashi, K. Takaoka, S. Nomura, K. Ogura, Tetrahedron. 61, 1107–1113 (2005) (e) M. Akazome, A. Hirabayashi, K. Ogura, Tetrahedron. 60, 12085–12093 (2004). (f) M. Akazome, Y. Ueno, H. Ooiso, K. Ogura, J. Org. Chem. 65, 68–76 (2000). (g) M. Akazome, T. Takahashi, K. Ogura, J. Org. Chem. 64, 2293–2300 (1999). (h) M. Akazome, M. Noguchi, O. Tanaka, A. Sumikawa, T. Uchida, K. Ogura, Tetrahedron. 53, 8315–8322 (1997).

    Google Scholar 

  7. C.H. Görbitz, Chem. Eur. J. 13, 1022–1031 (2007) and cited therein. (b) C.H. Görbitz, Acta Crystallogr. Sect. C 55, 2171–2177 (1999). (c) C.H. Görbitz, Acta Crystallogr. Sect. C 55, 670–672 (1999). (d) C.H. Görbitz, E. Torgersen, Acta Crystallogr. Sect. B 55, 104–113 (1999). (e) C.H. Görbitz, Acta Chem. Scand. 52, 1343–1349 (1998)

    Google Scholar 

  8. S. Muller, G.J.A. Ariaans, B. Kaptein, Q.B. Broxterman, F. Formaggio, E. Battan, M. Crisma, C. Toniolo, A. Bruggink, Tetrahedron Asymmetry 15, 1919–1927 (2004)

    Article  CAS  Google Scholar 

  9. (a) S. Müller, M.C. Afraz, R. de Gelder, G.J.A. Ariaans, B. Kaptein, Q.B. Broxtermann, A. Bruggink, Eur. J. Org. Chem. 1082–1096 (2005). (b) E. Weber, C. Reutel, C. Foces-Foces, A.L. Llamas-Saiz, J. Incl. Phenom. Macrocyc. Chem. 33, 47–68 (1999). (c) E. Weber, C. Reutel, C. Foces-Foces, A.L. Llamas-Saiz, J. Phys. Org. Chem. 8, 159–170 (1995). (d) E. Weber, C. Reutel, C. Foces-Foces, A.L. Llamas-Saiz, J. Chem. Soc. Perkin Trans. 2, 1455–170 (1994).

    Google Scholar 

  10. P. Dastidar, I. Goldberg, Hydrocarbon hosts: Biaryl, polyaryls, allenes, spiranes, and cyclophanes. Solid-state supramolecular chemistry: Crystal engineering, in Comprehensive Supramolecular Chemistry, vol. 6, ed. by D.D. MacNicol, F. Toda, R. Bishop (Pergamon Press, Oxford, 1996), pp. 305–317 and references therein

    Google Scholar 

  11. F. Toda, K. Akagi, Tetrahedron Lett. 33, 3695–3698 (1968)

    Article  Google Scholar 

  12. H. Hart, L.-T.W. Lin, D.L.J. Ward, Am. Chem. Soc. 106, 4043–4045 (1984)

    Article  CAS  Google Scholar 

  13. (a) K.-K.D. Ng, H. Hart, Tetrahedron. 51, 7883–7906 (1995). (b) Z. Stein, I. Golberg, Acta Cryst. C48, 1506–509 (1992). (c) Z. Stein, I. Golberg, Acta Cryst. C48, 1135–1136 (1992). (d) H. Hart, L.-T.W. Lin, D.L. Ward, J. Chem. Soc. Chem. Commun. 293–294 (1985). (e) I. Goldberg, L.-T.W. Lin, H. Hart, J. Incl. Phenom. 2, 377–389 (1984)

    Google Scholar 

  14. (a) C.M. Reddy, L.S. Reddy, S. Aitipamula, A. Nangia, C.-K. Lam, T.C.W. Mak, CrystEngComm. 7, 44–52 (2005). (b) C.M. Reddy, A. Nangia, C.-K. Lam, T.C.W. Mak, CrystEngComm. 4, 323–325 (2002). (c) R.K.R. Jetti, F. Xue, T.C.W. Mak, A. Nangia, J. Chem. Soc. Perkin Trans. 2, 1223–1232 (2000)

    Google Scholar 

  15. (a) S.D. Karlen, S. Khan, M.A. Garcia-Garibay, Cryst. Growth Des. 1, 53–55 (2005). (b) Z. Dominguez, T.-A.V. Khuong, H. Dang, C.N. Sanrame, J.E. Nuñez, M.A. Garcia-Garibay, J. Am. Chem. Soc. 125, 8827–8837 (2003). (c) Z. Dominguez, H. Dang, M.J. Strouse, M.A. Garcia-Garibay, J. Am. Chem. Soc. 124, 7719–7727 (2002). (d) Z. Dominguez, H. Dang, M.J. Strouse, M.A. Garcia-Garibay, J. Am. Chem. Soc. 124, 2398–2399 (2002)

    Google Scholar 

  16. (a) T. Yuge, I. Hisaki, M. Miyata, N. Tohnai, CrystEngComm. 10, 263–266 (2008). (b) T. Yuge, N. Tohnai, T. Fukuda, I. Hisaki, M. Miyata, Chem. Eur. J. 13, 4163–4168 (2007). (c) N. Tohnai, Y. Mizobe, M. Doi, S.-I. Sukata, T. Hinoue, T. Yuge, I. Hisaki, Y. Matsukawa, M. Miyata, Angew. Chem. Int. Ed. 46, 2220–2223 (2007). (d) A.D. Bond, W.H. Jørgensen, J.M. Pløger, Chem. Commun. 3273–3275 (2007). (e) K. Sada, T. Watanabe, J. Miyamoto, T. Fukuda, N. Tohnai, M. Miyata, T. Kitayama, K. Maehara, K. Ute, Chem. Lett. 33, 160–161 (2004)

    Google Scholar 

  17. (a) Y.-Y. Zhu, H.-P. Yi, C. Li, X.-K. Jiang, Z.-T. Li, Cryst. Growth Des. 8, 1294–1300 (2008). (b) P.S. Corbin, L.J. Lawless, Z. Li, Y. Ma, M.J. Witmer, S.C. Zimmerman, Proc. Natl. Acad. Sci. U. S. A. 99, 5099–5104 (2002). (c) P.M. Petersen, W. Wu, E.E. Fenlon, S. Kim, S.C. Zimmerman, Bioorg. Med. Chem. 4, 1107–1112 (1996)

    Google Scholar 

  18. T.W. Greene, P.G.M. Wuts, Protective Groups in Organic Synthesis (Wiley-Interscience, New York, 1991), pp. 366–367

    Google Scholar 

  19. (a) F. Hamzaoui, F. Baert, Acta Cryst. C50, 757–759 (1994). (b) D. André, R. Fourma, M. Renaud, Acta Cryst. B27, 2371–2380 (1971). (c) J.L. Katz, B. Post, Acta Cryst. 13, 624–628 (1960)

    Google Scholar 

  20. J. Marti-Rujas, A. Morte-Ródenas, F. Guo, N. Thomas, K. Fujii, B.M. Kariuki, K.D.M. Harris, Cryst. Growth Des. 10, 3176–3181 (2010)

    Article  CAS  Google Scholar 

  21. K. Megumi, S. Yokota, S. Matsumoto, M. Akazome, Tetrahedron Lett. 54, 707–710 (2013)

    Article  CAS  Google Scholar 

  22. P. Sieber, B. Riniker, Tetrahedron Lett. 32, 739–742 (1991)

    Article  CAS  Google Scholar 

  23. (a) B.G. De la Torre, M.A. Marcos, R. Eritja, F. Albericio, Lett. Pept. Sci. 8, 331–338 (2002). (b) K. Barlos, D. Papaioannou, D. Theodoropoulos, J. Org. Chem. 47, 1324–1326 (1982)

    Google Scholar 

  24. Crystallographic data for the structures in this review have been deposited with the Cambridge Crystallographic Centre as number CCDC 900257–900262 and 900797–900806

    Google Scholar 

  25. R. Taylor, O. Kennard, Acc. Chem. Res. 17, 320–326 (1984)

    Article  CAS  Google Scholar 

  26. A. Bond, J. Phys. Chem. 68, 441–451 (1964)

    Article  Google Scholar 

  27. (a) G. Desiraju, Acc. Chem. Res. 29, 441–449 (1996). (b) G. Desiraju, Acc. Chem. Res. 24, 290–296 (1991). (c) R. Taylor, O. Kennard, J. Am. Chem. Soc. 104, 5063–5070 (1982)

    Google Scholar 

  28. (a) A.D. Mesecar, D.E. Jr. Koshland, Nature 403, 614–615 (2000). (b) A.D. Mesecar, D.E. Jr. Koshland, IUBMB Life 49, 457–466 (2000)

    Google Scholar 

  29. (a) K. Kato, Y. Aoki, M. Sugahara, N. Tohnai, K. Sada, M. Miyata, Chirality 15, 53–59 (2003). (b) K. Kato, K. Aburaya, Y. Miyake, K. Sada, N. Tohnai, M. Miyata, Chem. Commun. 2872–2873 (2003)

    Google Scholar 

  30. K. Megumi, F. Nadiah Binti Mohd Arif, S. Matsumoto, M. Akazome, Cryst. Growth Des. 12, 5680–5685 (2012)

    Article  CAS  Google Scholar 

  31. (a) Y. Imai, K. Kawaguchi, H. Matsuno, T. Sato, R. Kuroda, Y. Matsubara, Tetrahedron 64, 4585–4589 (2008). (b) Y. Imai, K. Kawaguchi, K. Asai, T. Sato, R. Kuroda, Y. Matsubara, CrystEngComm. 9, 467–470 (2007). (i) K. Sada, N. Shiomi, M. Miyata, J. Am. Chem. Soc. 120, 10543–10544 (1998)

    Google Scholar 

  32. (a) K. Kodama, Y. Kobayashi, K. Saigo, Cryst. Growth Des. 7, 935–939 (2007). (b) K. Kodama, Y. Kobayashi, K. Saigo, Chem. Eur. J. 13, 2144–2152 (2007). (c) Y. Imai, K. Kawaguchi, T. Sato, R. Kuroda, Y. Matsubara, Tetrahedron Lett. 47, 7885–7888 (2006). (d) Y. Imai, M. Takeshita, T. Sato, R. Kuroda, Chem. Commun. 1070–1072 (2006). (e) Y. Imai, T. Sato, R. Kuroda, Chem. Commun. 3289–3291 (2005). (f) Y. Kobayashi, K. Kodama, K. Saigo, Org. Lett. 6, 2941–2944 (2004)

    Google Scholar 

  33. K. Sada, T. Tani, S. Shinkai, Synlett 15, 2364–2374 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motohiro Akazome .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Akazome, M. (2015). Chiral Recognition by Inclusion Crystals of Amino-Acid Derivatives Having Trityl Groups. In: Tamura, R., Miyata, M. (eds) Advances in Organic Crystal Chemistry. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55555-1_23

Download citation

Publish with us

Policies and ethics