Skip to main content

Polymorphism in Molecular Crystals and Cocrystals

  • Chapter
Advances in Organic Crystal Chemistry

Abstract

Polymorphism refers to a compound’s ability to exist in more than one crystalline modification through variations in the solid-state structures. Over the years, polymorphism has received extensive academic and industrial attention because of its impact on physical and chemical properties of active pharmaceutical ingredients and materials. It is preferable to develop the most stable polymorph to avoid unwanted phase transformation during processing and manufacturing. Therefore, a thorough polymorph screening and complete characterization of all the polymorphs are vital for understanding stability and phase transformations among different polymorphs. Recent advances in screening methodologies and analytical techniques paved ways for successful identification of potential polymorphs. While polymorphism in active pharmaceutical ingredients and single-component crystals is widely studied, such studies in multicomponent crystals such as cocrystals have received significant attention only in recent years. This chapter highlights some recent polymorphic systems of molecular crystals and cocrystals and emphasizes the potential implications of polymorphism in pharmaceutical and materials science. A brief history of polymorphism, factors that control the crystallization of polymorphs, thermodynamic aspects, and recent advances in screening methodologies and analytical techniques are also covered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Bernstein, Polymorphism in Molecular Crystals (Clarendon, Oxford, 2002)

    Google Scholar 

  2. G.M. Frankenbach, M.C. Etter, Relationship between symmetry in hydrogen-bonded benzoic acids and the formation of acentric crystal structures. Chem. Mater. 4, 272–278 (1992)

    Article  CAS  Google Scholar 

  3. D.D. MacNicol, F. Toda, R. Bishop, Comprehensive supramolecular chemistry, solid-state supramolecular chemistry, in Crystal Engineering, vol. 6 (Pergamon Press, Oxford, 1996)

    Google Scholar 

  4. P.H. Stahl, C.G. Wermuth, Handbook of Pharmaceutical Salt Properties, Selection and Use (Wiley-VCH, Weinheim/New York, 2002)

    Google Scholar 

  5. F.H. Herbstein, Crystalline Molecular Complexes and Compounds. IUCr Monograph (Oxford University, Oxford, 2005)

    Book  Google Scholar 

  6. Ö. Almarsson, M.J. Zaworotko, Crystal engineering of the composition of pharmaceutical phases. Do pharmaceutical co-crystals represent a new path to improved medicines? Chem. Commun. 1889–1896 (2004)

    Google Scholar 

  7. M.A. Oliveira, M.L. Peterson, D. Klein, Continuously substituted solid solutions of organic cocrystals. Cryst. Growth Des. 8, 4487–4493 (2008)

    Article  CAS  Google Scholar 

  8. S. Cherukuvada, A. Nangia, Eutectics as improved pharmaceutical materials: design, properties and characterization. Chem. Commun. 50, 906–923 (2014)

    Article  CAS  Google Scholar 

  9. S.L. Morissette, Ö. Almarsson, M.L. Peterson, J.F. Remenar, M.J. Read, A.V. Lemmo, S. Ellis, M.J. Cima, C.R. Gardner, High-throughput crystallization: polymorphs, salts, co-crystals and solvates of pharmaceutical solids. Adv. Drug Deliv. Rev. 56, 275–300 (2004)

    Article  CAS  Google Scholar 

  10. K.S. Khomane, P.K. More, G. Raghavendra, A.K. Bansal, Molecular understanding of the compaction behavior of indomethacin polymorphs. Mol. Pharm. 10, 631–639 (2013)

    Article  CAS  Google Scholar 

  11. M.H. Klaproth, J. Bergmannisch. I, 294–299 (1798)

    Google Scholar 

  12. E. Mitscherlich, Über die Körper, welche in zwei verschiedenen krystallisieren Formen. Abhl. Akad. Berlin. 18221823, 43–48

    Google Scholar 

  13. A. Nangia, Conformational polymorphs, multi Z’ crystal structures and phase transformations. J. Indian Inst. Sci. 87, 133–147 (2007)

    CAS  Google Scholar 

  14. O. Lehmann, Die Kristallanalyse oder die chemische Analyse durch Beobachtung der Krystallbildung mit Hülfe des Mikroskps (Wilhelm Engelmann, Leipzig, 1891)

    Google Scholar 

  15. W.F. Ostwald, Studien über die bildung and umwandlung feöter korper. Studies on formation and transformation of solid materials. Z. Phys. Chem. 22, 289–330 (1897)

    CAS  Google Scholar 

  16. G. Tamman, The States of Aggregation (trans. FF Mehl) (Constable and Company, Ltd., London, 1926), pp. 116–157

    Google Scholar 

  17. (a) A. Burger, R. Ramberger, On the polymorphism of pharmaceuticals and other molecular crystals. I. Theory of thermodynamic rules. Mikrochim. Acta. II, 259–272 (1979), (b) A. Burger, R. Ramberger, On the polymorphism of pharmaceuticals and other molecular crystals. Mikrochim. Acta. II, 273–316 (1979)

    Google Scholar 

  18. W.C. McCrone, in Physics and Chemistry of the Organic Solid State, ed. by D. Fox, M.M. Labes, A. Weissberger, vol. 2 (Interscience, London, 1965), pp. 725–767

    Google Scholar 

  19. S.R. Chemburkar, J. Bauer, K. Deming, H. Spiwek, K. Patel, J. Morris, R. Henry, S. Spanton, W. Dziki, W. Porter, J. Quick, P. Bauer, J. Donaubauer, B.A. Narayanan, M. Soldani, D. Riley, K. McFarland, Dealing with the impact of ritonavir polymorphs on the late stages of bulk drug process development. Org. Process Res. Dev. 4, 413–417 (2000)

    Article  CAS  Google Scholar 

  20. S. Aitipamula, P.S. Chow, R.B.H. Tan, Polymorphism in cocrystals: a review and assessment of its significance. CrystEngComm 16, 3451–3465 (2014)

    Article  CAS  Google Scholar 

  21. A. Grunenberg, J.-O. Henck, H.W. Siesler, Theoretical derivation and practical application of energy/temperature diagrams as an instrument in preformulation studies of polymorphic drug substances. Int. J. Pharm. 129, 147–158 (1996)

    Article  CAS  Google Scholar 

  22. L. Yu, Polymorphism in molecular solids: an extraordinary system of red, orange, and yellow crystals. Acc. Chem. Res. 43, 1257–1266 (2010)

    Article  CAS  Google Scholar 

  23. T. Ueto, N. Takata, N. Muroyama, A. Nedu, A. Sasaki, S. Tanida, K. Terada, Polymorphs and a hydrate of furosemide-nicotinamide 1:1 cocrystal. Cryst. Growth Des. 12, 485–494 (2012)

    Article  CAS  Google Scholar 

  24. M. Jim, K.-J. Kim, Effect of supersaturation on polymorphs of clopidogrel hydrogen sulfate in drawing-out crystallization. Chem. Eng. Technol. 35, 995–1002 (2012)

    CAS  Google Scholar 

  25. C. Cacela, A. Baudot, M.L. Duarte, A.M. Matos-Beja, M.R. Silva, J.A. Paixão, R. Fausto, Low temperature polymorphism in 3-amino-1-propanol. J. Mol. Struct. 649, 143–153 (2003)

    Article  CAS  Google Scholar 

  26. F.P.A. Fabbiani, D.R. Allan, W.I.F. David, S.A. Moggach, S. Parsons, C.R. Pulham, High-pressure recrystallization-a route to new polymorphs and solvates. CrystEngComm 6, 504–511 (2004)

    Article  CAS  Google Scholar 

  27. F.P.A. Fabbiani, D.R. Allan, S. Parsons, C.R. Pulham, An exploration of the polymorphism of piracetam using high pressure. CrystEngComm 7, 179–186 (2005)

    Article  CAS  Google Scholar 

  28. G.D. Profio, A. Caridi, R. Caliandro, A. Guagliardi, E. Curcio, E. Drioli, Fine dosage of anti-solvent in the crystallization of L-histidine: effect on polymorphism. Cryst. Growth Des. 10, 449–455 (2010)

    Article  Google Scholar 

  29. B. Subramaniam, R.A. Rajewski, K. Snavely, Pharmaceutical processing with supercritical carbon dioxide. J. Pharm. Sci. 86, 885–890 (1997)

    Article  CAS  Google Scholar 

  30. R. Bettini, R. Menabeni, R. Tozzi, M.B. Prazo, I. Pasquali, M.R. Chierott, R. Gobetto, L. Pellegrino, Didanosine polymorphism in a supercritical antisolvent process. J. Pharm. Sci. 99, 1855–1870 (2010)

    CAS  Google Scholar 

  31. M. Moneghini, I. Kikic, D. Voinovich, B. Perissutti, P. Alessi, A. Cortesi, F. Princivalle, D. Solinas, Study of the solid state of carbamazepine after processing with gas anti-solvent technique. Eur. J. Pharm. Biopharm. 56, 281–289 (2003)

    Article  CAS  Google Scholar 

  32. R.-Q. Song, H. Cölfen, Additive controlled crystallization. CrystEngComm 13, 1249–1276 (2011)

    Article  CAS  Google Scholar 

  33. Y. Gong, B.M. Colliman, S.M. Mehrens, E. Lu, J.M. Miller, A. Blackburn, D.J. Grant, Stable-form screening: overcoming trace impurities that inhibit solution-mediated phase transformation to the stable polymorph of sulfamerazine. J. Pharm. Sci. 97, 2130–2144 (2008)

    Article  CAS  Google Scholar 

  34. S. Aitipamula, P.S. Chow, R.B.H. Tan, Conformational and enantiotropic polymorphism of a 1:1 cocrystal involving ethenzamide and ethylmalonic acid. CrystEngComm 12, 3691–3697 (2010)

    Article  CAS  Google Scholar 

  35. A.V. Trask, W.D.S. Motherwell, W. Jones, Solvent-drop grinding: green polymorph control of cocrystallization. Chem. Commun. 890–891 (2004)

    Google Scholar 

  36. S. Roy, A.J. Matzger, Unmasking a third polymorph of a benchmark crystal-structure-prediction compound. Angew. Chem. Int. Ed. 48, 8505–8508 (2009)

    Article  CAS  Google Scholar 

  37. W.W. Porter III, S.C. Elie, A.J. Matzger, Polymorphism in carbamazepine cocrystals. Cryst. Growth Des. 8, 14–16 (2008)

    Article  CAS  Google Scholar 

  38. (a) P.P. Bag, C.M. Reddy, Screening and selective preparation of polymorphs by fast evaporation method: a case study of aspirin, anthranilic acid, and niflumic acid. Cryst. Growth Des. 12, 2740–2743 (2012), (b) P.P. Bag, M. Patni, C.M. Reddy, A kinetically controlled crystallization process for identifying new co-crystal forms: fast evaporation of solvent from solutions to dryness. CrystEngComm. 13, 5650–5652 (2011)

    Google Scholar 

  39. A. Alhalaweh, S.P. Velaga, Formation of cocrystals from stoichiometric solutions of incongruently saturating systems by spray drying. Cryst. Growth Des. 10, 3302–3305 (2010)

    Article  CAS  Google Scholar 

  40. S. Aitipamula, P.S. Chow, R.B.H. Tan, Conformational polymorphs of a muscle relaxant, metaxalone. Cryst. Growth Des. 11, 4101–4109 (2011)

    Article  CAS  Google Scholar 

  41. S. Thirunahari, S. Aitipamula, P.S. Chow, R.B.H. Tan, Conformational polymorphism of tolbutamide: a structural, spectroscopic, and thermodynamic characterization of Burger’s forms I–IV. J. Pharm. Sci. 99, 2975–2990 (2010)

    CAS  Google Scholar 

  42. S. Aitipamula, A.B.H. Wong, P.S. Chow, R.B.H. Tan, Polymorphism and phase transformations of a cocrystal of nicotinamide and pimelic acid. CrystEngComm 14, 8193–8198 (2012)

    Article  CAS  Google Scholar 

  43. R. Thakuria, M.D. Eddleston, E.H.H. Chow, G.O. Lloyd, B.J. Aldous, J.F. Krzyzaniak, A.D. Bond, W. Jones, Use of in situ atomic force microscopy to follow phase changes at crystal surfaces in real time. Angew. Chem. Int. Ed. 52, 10541–10544 (2013)

    Article  CAS  Google Scholar 

  44. A. Nangia, Conformational polymorphism in organic crystals. Acc. Chem. Res. 41, 595–604 (2008)

    Article  CAS  Google Scholar 

  45. S. Parveen, R.J. Davey, G. Dent, R.G. Pritchard, Linking solution chemistry to crystal nucleation: the case of tetrolic acid. Chem. Commun. 1531–1533 (2005)

    Google Scholar 

  46. S. Aitipamula, P.S. Chow, R.B.H. Tan, Polymorphs and solvates of a cocrystal involving an analgesic drug, ethenzamide, and 3,5-dinitrobenzoic acid. Cryst. Growth Des. 10, 2229–2238 (2010)

    Article  CAS  Google Scholar 

  47. S. Aitipamula, A.B.H. Wong, P.S. Chow, R.B.H. Tan, Novel solid forms of the anti-tuberculosis drug, isoniazid: ternary and polymorphic cocrystals. CrystEngComm 15, 5877–5887 (2013)

    Article  CAS  Google Scholar 

  48. S.L. Childs, K.I. Hardcastle, Cocrystals of piroxicam with carboxylic acids. Cryst. Growth Des. 7, 1291–1304 (2007)

    Article  CAS  Google Scholar 

  49. J. Bernstein, R.J. Davey, J.-O. Henck, Concomitant polymorphs. Angew. Chem. Int. Ed. 38, 3440–3461 (1999)

    Article  Google Scholar 

  50. J.D. Dunitz, J. Bernstein, Disappearing polymorphs. Acc. Chem. Res. 28, 193–200 (1995)

    Article  CAS  Google Scholar 

  51. N.R. Goud, A. Nangia, Synthon polymorphs of sulfacetamide-acetamide cocrystal based on N − H∙∙∙O = S and N − H∙∙∙O = C hydrogen bonding. CrystEngComm 15, 7456–7461 (2013)

    Article  CAS  Google Scholar 

  52. W. Du, Y. Zhou, Y. Gong, C. Zhao, Investigation of physicochemical properties and in-vitro in-vivo evaluation of agomelatine polymorphs. Asian J. Pharm. Sci. 8, 181–190 (2013)

    Article  Google Scholar 

  53. T. Friščić, L.R. MacGillivray, Engineering cocrystal and polymorph architecture via pseudoseeding. Chem. Commun. 773–775 (2009)

    Google Scholar 

  54. A.V. Trask, W.D.S. Motherwell, W. Jones, Pharmaceutical cocrystallization: engineering a remedy for caffeine hydration. Cryst. Growth Des. 5, 1013–1021 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

SA thanks Prof. Reginald B. H. Tan and Dr. Pui Shan Chow of the Institute of Chemical and Engineering Sciences for encouragement and support and the Science and Engineering Research Council of A*STAR, Singapore, for research funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinivasulu Aitipamula .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Aitipamula, S. (2015). Polymorphism in Molecular Crystals and Cocrystals. In: Tamura, R., Miyata, M. (eds) Advances in Organic Crystal Chemistry. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55555-1_14

Download citation

Publish with us

Policies and ethics