Electronic Structure and Transition in the Far-Ultraviolet Region

  • Yusuke Morisawa
  • Masahiro Ehara


This chapter overviews the investigations by using the attenuated total reflection far-ultraviolet (ATR-FUV) spectroscopy. These studies elucidate the electronic structure and electronic transition of molecules in the FUV region. The target molecules or systems include n- and branched alkanes, alcohols, ketones, amides, and nylons in the liquid or solid phase. The reliable and consistent assignments were performed with the help of quantum chemical calculation protocols, namely, time-dependent density functional theory (TD-DFT) and symmetry-adapted cluster–configuration interaction (SAC-CI) calculations. The typical features in the FUV region of n- and branched alkanes, ketones, amides, and nylons were interpreted in detail. The confined Rydberg transitions were clearly probed in the studies of alkanes and ketones. The intermolecular interaction via hydrogen bonding and the polarization of the surroundings in the liquid or solid phase was analyzed for amides and nylons using the present spectroscopy.


ATR-FUV Liquid state Rydberg state Quantum chemical calculations 


  1. 1.
    M.B. Robin, Higher Excited States of Polyatomic Molecules (Academic Press, New York/London, 1974)Google Scholar
  2. 2.
    M. Chergui, N. Schwentner, Chem. Phys. Lett. 219, 237–242 (1994)CrossRefGoogle Scholar
  3. 3.
    N. Higashi, A. Ikehata, Y. Ozaki, Rev. Sci. Instrum. 78, 103107 (2007)CrossRefGoogle Scholar
  4. 4.
    Y. Ozaki, Y. Morisawa, N. Higashi, A. Ikehata, Appl. Spectrosc. 66, 1–25 (2012)CrossRefGoogle Scholar
  5. 5.
    Y. Morisawa, A. Ikehata, N. Higashi, Y. Ozaki, Chem. Phys. Lett. 476, 205–208 (2009)CrossRefGoogle Scholar
  6. 6.
    S. Tachibana, Y. Morisawa, A. Ikehata, N. Higashi, Y. Ozaki, Appl. Spectrosc. 65, 221–226 (2011)Google Scholar
  7. 7.
    Y. Morisawa, S. Tachibana, M. Ehara, Y. Ozaki, J. Phys. Chem. A 116, 11957–11964 (2012)CrossRefGoogle Scholar
  8. 8.
    Y. Morisawa, A. Ikehata, N. Higashi, Y. Ozaki, J. Phys. Chem. A 115, 562–568 (2011)CrossRefGoogle Scholar
  9. 9.
    Y. Morisawa, M. Yasunaga, R. Fukuda, M. Ehara, Y. Ozaki, J. Chem. Phys. 139, 154301 (2013)CrossRefGoogle Scholar
  10. 10.
    Y. Morisawa, M. Yasunaga, H. Sato, R. Fukuda, M. Ehara, Y. Ozaki, J. Phys. Chem. B 118, 11855–11861 (2014)CrossRefGoogle Scholar
  11. 11.
    A. Ikehata, N. Higashi, Y. Ozaki, J. Chem. Phys. 129, 234510 (2008)CrossRefGoogle Scholar
  12. 12.
    A. Ikehata, M. Mitsuoka, Y. Morisawa, N. Kariyama, N. Higashi, Y. Ozaki, J. Phys. Chem. A 114, 8319–8322 (2010)CrossRefGoogle Scholar
  13. 13.
    T. Goto, A. Ikehata, Y. Morisawa, N. Higashi, Y. Ozaki, Phys. Chem. Chem. Phys. 14, 8097–8104 (2012)CrossRefGoogle Scholar
  14. 14.
    T. Goto, A. Ikehata, Y. Morisawa, N. Higashi, Y. Ozaki, Inorg. Chem. 51, 10650–10656 (2012)CrossRefGoogle Scholar
  15. 15.
    I. Tanabe, Y. Ozaki, Chem. Commun. 50, 2117–2119 (2014)CrossRefGoogle Scholar
  16. 16.
    I. Tanabe, T. Ryoki, Y. Ozaki, Phys. Chem. Chem. Phys. 16, 7749–7753 (2014)CrossRefGoogle Scholar
  17. 17.
    Y. Morisawa, N. Higashi, K. Takaba, N. Kariyama, T. Goto, A. Ikehata, Y. Ozaki, Rev. Sci. Instrum. 83, 073103 (2012)CrossRefGoogle Scholar
  18. 18.
    T. Goto, Y. Morisawa, N. Higashi, A. Ikehata, Y. Ozaki, Anal. Chem. 85, 4500–4506 (2013)CrossRefGoogle Scholar
  19. 19.
    S. Onari, Jpn. J. Appl. Phys. 9, 227 (1970)CrossRefGoogle Scholar
  20. 20.
    L. Serrano-Andres, M.P. Fulscher, J. Am. Chem. Soc. 120, 10912–10920 (1998)CrossRefGoogle Scholar
  21. 21.
    H. Nakatsuji, Chem. Phys. Lett. 59, 362–364 (1978)CrossRefGoogle Scholar
  22. 22.
    H. Nakatsuji, Chem. Phys. Lett. 67, 329–333 (1979)CrossRefGoogle Scholar
  23. 23.
    M. Ehara, J. Hasegawa, H. Nakatsuji, Chapter 39 – SAC-CI method applied to molecular spectroscopy, in Theory and Applications of Computational Chemistry: The First 40 Years, A Volume of Technical and Historical Perspectives, ed. by C.E. Dykstra, G. Frenking, K.S. Kim, G.E. Scuseria (Elsevier, Oxford, 2005), pp. 1099−1141Google Scholar
  24. 24.
    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785–789 (1988)CrossRefGoogle Scholar
  25. 25.
    A.D. Becke, J. Chem. Phys. 98, 5648–5652 (1993)CrossRefGoogle Scholar
  26. 26.
    C. Adamo, V. Barone, J. Chem. Phys. 108, 664–675 (1998)CrossRefGoogle Scholar
  27. 27.
    H. Iikura, T. Tsuneda, T. Yanai, K. Hirao, J. Chem. Phys. 115, 3540–3544 (2001)CrossRefGoogle Scholar
  28. 28.
    T. Yanai, D.P. Tew, N.C. Handy, Chem. Phys. Lett. 91, 51–57 (2004)CrossRefGoogle Scholar
  29. 29.
    T.H. Dunning Jr., J. Chem. Phys. 90, 1007–1023 (1989)CrossRefGoogle Scholar
  30. 30.
    J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 105, 2999–3094 (2005)CrossRefGoogle Scholar
  31. 31.
    R. Cammi, B. Mennucci, J. Tomasi, J. Phys. Chem. A 104, 5631–5637 (2000)CrossRefGoogle Scholar
  32. 32.
    M. Cossi, V.J. Barone, Chem. Phys. 115, 4708–4717 (2001)Google Scholar
  33. 33.
    R. Improta, V. Barone, G. Scalmani, M.J. Frisch, J. Chem. Phys. 125, 054103 (2006)CrossRefGoogle Scholar
  34. 34.
    M. Caricato, B. Mennucci, J. Tomasi, F. Ingrosso, R. Cammi, S. Corni, G. Scalmani, J. Chem. Phys. 124, 124520 (2006)CrossRefGoogle Scholar
  35. 35.
    H. Nakatsuji, Chem. Phys. 75, 425–441 (1983)CrossRefGoogle Scholar
  36. 36.
    R. Fukuda, H. Nakatsuji, J. Chem. Phys. 128, 094105 (2008)CrossRefGoogle Scholar
  37. 37.
    R. Cammi, R. Fukuda, M. Ehara, H. Nakatsuji, J. Chem. Phys. 133, 024104 (2010)CrossRefGoogle Scholar
  38. 38.
    R. Fukuda, M. Ehara, H. Nakatsuji, R. Cammi, J. Chem. Phys. 134, 104109 (2011)CrossRefGoogle Scholar
  39. 39.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian09 Rev. B.01 (Gaussian Inc., Wallingford, 2010)Google Scholar
  40. 40.
    B.-M. Cheng, M. Bahou, W.-C. Chen, C.-H. Yui, Y.-P. Lee, L.C. Lee, J. Chem. Phys. 117, 1633–1640 (2002)CrossRefGoogle Scholar
  41. 41.
    M. Nobre, A. Fernandes, A. Ferreiru da Silva, R. Antunes, D. Almeida, V. Kokhan, S.V. Hoffmann, N.J. Mason, S. Eden, P. Limao-Vieira, Phys. Chem. Chem. Phys. 10, 550–560 (2008)CrossRefGoogle Scholar
  42. 42.
    I. Renge, J. Phys. Chem. A 113, 10678–10686 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  1. 1.Department of Chemistry, School of Science and EngineeringKinki UniversityHigashi-OsakaJapan
  2. 2.Research Center for Computational Science, Institute of Molecular ScienceMyodaiji, OkazakiJapan
  3. 3.Elements Strategy Initiative for Catalysts and Batteries (ESICB)Kyoto University KatsuraKyotoJapan

Personalised recommendations