Skip to main content

Topological Invariant and Topological Phases

  • Chapter
  • First Online:
Topological States on Interfaces Protected by Symmetry

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In this chapter, we review several topics for an introduction to topological insulators and the edge states resulting from the bulk-boundary correspondence. In condensed matter physics, researches in terms of topology have been intensively done after the discovery of the quantum Hall effect (von Klitzing et al., Phys Rev Lett 49:494, 1980, [1]). Systems are characterized topologically and topological classification is done in terms of symmetry. We first introduce the quantum Hall effect to explain a topological phase with time-reversal symmetry breaking. Next, we discuss topological insulators (Hasan and Kane, Rev Mod Phys 82:3045, 2010, [2]) as a natural extension of the quantum Hall system. The topological aspect of the quantum Hall effect teaches us the background of the quantized conductivity, and these basic notions can be applied to topological insulators. Finally, we introduce another kind of a topological material, which has flat-band states localized at the edge at the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We assume that the Berry curvature does not depend on time \(t\), because the Hall current is the lowest order in the time-dependent term, when we assume that the time dependence of the system is weak.

  2. 2.

    For a vector \(\mathrm {x}=x_{1}\mathbf {e}_{1}+x_{2}\mathbf {e_{2}}+x_{3}\mathbf {e_{3}}\) where \(\mathbf {e}_{i=1,2,3}\) are the basis vectors, the wedge product \(\wedge \) is defined as

    figure a
  3. 3.

    When the Landau level is filled, the electron density per Landau level is given as \(\frac{N_{0}}{L_xL_y}=\frac{eB}{h}=\frac{1}{2\pi \ell ^{2}}\).

  4. 4.

    In 1D the Z\(_2\) topological number cannot be defined. For example, by a gauge transformation \(|u\rangle \rightarrow \mathrm {e}^{ik/(2\varGamma )}|u\rangle \) where \(\varGamma \) is a half of the reciprocal lattice vector, the Z\(_2\) topological number changes as \((-1)^{v}\rightarrow -(-1)^{v}\).

  5. 5.

    We assume the tuning affect only the four bands around the Fermi energy.

  6. 6.

    For example \(\psi _{1}\) consists of s-orbitals, and \(\psi _{2}\) consists of p-orbitals.

  7. 7.

    The Hamiltonian (Eq. 2.68) is transformed into \(v(\varvec{\sigma }\cdot \mathbf {k})\) by the unitary transformation, which is known as the massless Dirac Hamiltonian. Therefore we call Eq. (2.68) as the Dirac Hamiltonian.

References

  1. K. von Klitzing, K.G. Dorda, M. Pepper, Phys. Rev. Lett. 45, 494 (1980)

    Article  ADS  Google Scholar 

  2. M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010)

    Article  ADS  Google Scholar 

  3. R.B. Laughlin, Phys. Rev. B 23, 5632 (1981)

    Article  ADS  Google Scholar 

  4. D.J. Thouless, M. Kohmoto, M.P. Nightingale, M. den Nijs, Phys. Rev. Lett. 49, 405 (1982)

    Article  ADS  Google Scholar 

  5. M.V. Berry, Proc. R. Soc. Lond. A 392, 45 (1984)

    Article  ADS  MATH  Google Scholar 

  6. J.E. Avron, D. Osadchy, R. Seiler, Phys. Today 56, 38 (2003)

    Article  Google Scholar 

  7. M. Kohmoto, Ann. Phys. N.Y. 160, 343 (1985)

    Google Scholar 

  8. R.D. King-Smith, D. Vanderbilt, Phys. Rev. B 47, 1651–1654 (1993)

    Article  ADS  Google Scholar 

  9. R. Resta, Rev. Mod. Phys. 66, 899–915 (1994)

    Article  ADS  Google Scholar 

  10. B.I. Halperin, Phys. Rev. B 25, 2724 (1982)

    Article  MathSciNet  Google Scholar 

  11. M. Büttiker, Phys. Rev. B 38, 9375 (1988)

    Google Scholar 

  12. F.D.M. Haldane, Phys. Rev. Lett. 61, 2015 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  13. C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 226801 (2005)

    Article  ADS  Google Scholar 

  14. C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 146802 (2005)

    Article  ADS  Google Scholar 

  15. B.A. Bernevig, T.L. Hughes, S.-C. Zhang, Science 314, 1757 (2006)

    Article  ADS  Google Scholar 

  16. J.E. Moore, L. Balents, Phys. Rev. B 75, 121306(R) (2007)

    Article  ADS  Google Scholar 

  17. L. Fu, C.L. Kane, E.J. Mele, Phys. Rev. Lett. 98, 106803 (2007)

    Article  ADS  Google Scholar 

  18. R. Roy, Phys. Rev. B 79, 195322 (2009)

    Article  ADS  Google Scholar 

  19. M. König et al., Science 318, 766 (2007)

    Article  ADS  Google Scholar 

  20. R. Roy, Phys. Rev. B 79, 195321 (2009)

    Article  ADS  Google Scholar 

  21. D. Hsieh et al., Nature (London) 452, 970 (2008)

    Article  ADS  Google Scholar 

  22. Y. Xia et al., Nat. Phys. 5, 398 (2009)

    Article  Google Scholar 

  23. D. Hsieh et al., Nature (London) 460, 1101 (2009)

    Article  ADS  Google Scholar 

  24. Y.L. Chen et al., Science 325, 178 (2009)

    Article  ADS  Google Scholar 

  25. T. Valla et al., Phys. Rev. B 86, 241101(R) (2012)

    Article  ADS  Google Scholar 

  26. C. Xu, J.E. Moore, Phys. Rev. B 73, 045322 (2006)

    Article  ADS  Google Scholar 

  27. C. Wu, B.A. Bernevig, S.-C. Zhang, Phys. Rev. Lett. 96, 106401 (2006)

    Article  ADS  Google Scholar 

  28. H.J. Goldsmid, Thermoelectric Refrigeration (Plenum, New York, 1964)

    Book  Google Scholar 

  29. G.A. Slack, in CRC Handbook of Thermoelectrics ed by D.M. Rowe (CRC Press, Boca Raton, 1995), pp. 407–440

    Google Scholar 

  30. R. Takahashi, S. Murakami, Phys. Rev. B 81, 161302(R) (2010)

    Article  ADS  Google Scholar 

  31. P. Ghaemi, R.S.K. Mong, J.E. Moore. Phys. Rev. Lett. 105, 166603 (2010)

    Google Scholar 

  32. L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993)

    Article  ADS  Google Scholar 

  33. L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 16631 (1993)

    Article  ADS  Google Scholar 

  34. R. Takahashi, S. Murakami, Semicond. Sci. Technol. 27, 124005 (2012)

    Google Scholar 

  35. L. Fu, C.L. Kane, Phys. Rev. B 74, 195312 (2006)

    Article  ADS  Google Scholar 

  36. S. Murakami, N. Nagaosa, S.-C. Zhang, Science 301, 1348 (2006)

    Article  ADS  Google Scholar 

  37. J. Sinova et al., Phys. Rev. Lett. 92, 126603 (2004)

    Article  ADS  Google Scholar 

  38. M.I. Dyakanov, V.I. Perel, JETP Lett. 13, 467 (1971)

    ADS  Google Scholar 

  39. M.I. Dyakanov, V.I. Perel, Phys. Lett. A 35, 459 (1971)

    Article  ADS  Google Scholar 

  40. Y.K. Kato et al., Science 306, 1910 (2004)

    Article  ADS  Google Scholar 

  41. J. Wunderlich et al., Phys. Rev. Lett. 94, 047204 (2005)

    Article  ADS  Google Scholar 

  42. X.L. Qi et al., Phys. Rev. B 78, 195424 (2008)

    Article  ADS  Google Scholar 

  43. Z. Wang et al., New J. Phys. 12, 065007 (2010)

    Article  ADS  Google Scholar 

  44. A.M. Essin, J.E. Moore, D. Vanderbilt, Phys. Rev. Lett. 102, 146805 (2009)

    Article  ADS  Google Scholar 

  45. L. Fu, C.L. Kane, Phys. Rev. B 76, 045302 (2007)

    Article  ADS  Google Scholar 

  46. H. Zhang et al., Nat. Phys. 5, 438 (2009)

    Article  Google Scholar 

  47. C.X. Liu et al., Phys. Rev. B 82, 045122 (2010)

    Article  ADS  Google Scholar 

  48. W.-Y. Shan, H.-Z. Lu, S.-Q. Shen, New J. Phys. 12, 043048 (2010)

    Article  ADS  Google Scholar 

  49. E.H. Lieb, Phys. Rev. Lett. 62, 1201 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  50. A. Mielke, J. Phys. A: Math. Gen. 24, L73 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  51. A. Mielke, J. Phys. A 24, 3311 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  52. A. Mielke, J. Phys. A 25, 4335 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  53. A. Mielke, H. Tasaki, Commun. Math. Phys. 158, 341 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  54. K.S. Novoselov et al., Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  55. M. Fujita et al., J. Phys. Soc. 65, 1920 (1996)

    Article  ADS  Google Scholar 

  56. S. Ryu, Y. Hatsugai, Phys. Rev. Lett. 89, 077002 (2002)

    Article  ADS  Google Scholar 

  57. R. Takahashi, S. Murakami, Phys. Rev. B 88, 235303 (2013)

    Article  ADS  Google Scholar 

  58. P. Dietl, F. Piechon, G. Montambaux, Phys. Rev. Lett. 100, 236405 (2008)

    Article  ADS  Google Scholar 

  59. P. Delplace, D. Ullmo, G. Montambaux, Phys. Rev. B 84, 195452 (2011)

    Article  ADS  Google Scholar 

  60. M. Kohmoto, Y. Hasegawa, Phys. Rev. B 76, 205402 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryuji Takahashi .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Takahashi, R. (2015). Topological Invariant and Topological Phases. In: Topological States on Interfaces Protected by Symmetry. Springer Theses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55534-6_2

Download citation

Publish with us

Policies and ethics