Skip to main content

ICG Videoangiography in Neurosurgical Procedures

  • Chapter
  • First Online:
ICG Fluorescence Imaging and Navigation Surgery

Abstract

Indocyanine green videoangiography (ICG-VAG) has recently been used for neurosurgical procedures, and its usefulness and drawbacks were evaluated. ICG-VAG showed blood flow in the vessels as the hemodynamic change of ICG fluorescence intensity. In clipping cerebral aneurysms, preservation of blood flow in the parent and perforating arteries and occlusion of the aneurysm were recognized. In bypass surgery, the patency of blood flow from the graft was observed. In carotid endarterectomy, the precise stenosis area or residual stenosis was observed before or after surgery. In removal of arteriovenous malformation, the feeding arteries, draining veins, and the nidus were clearly demonstrated. In tumor surgery, tumor-related vessels, normal brain parenchyma vessels, bridging veins, and tumor margin infiltration were observed. These findings obtained using ICG-VAG were useful to achieve these surgeries safely and completely without complications associated with the use of ICG-VAG.

Recently, the semiquantitative flow measurement using the analysis software such as FLOW 800 was used for bypass, vascular malformation, and acute stroke surgery. Endoscopic ICG-VAG was applied in aneurysm clipping and pituitary adenoma surgery.

Although there are some drawbacks associated with the use of ICG-VAG such as the presence of blind spots and the difficulty with true quantitative blood flow analysis, it is a useful intraoperative examination because of its safety and convenience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bensori RC, Kunes HA (1978) Fluorescence properties of indocyanine green as related to angiography. Phys Med Biol 23:159–163

    Article  Google Scholar 

  2. Hayashi K, de Laey JJ (1985) Indocyanine green angiography of submacular choroidal vessels in the human eye. Ophthalmologica 190(1):20–9

    Article  CAS  PubMed  Google Scholar 

  3. Novotny HR, Alvis DL (1961) A method of photographing fluorescence in circulating blood in the human retina. Circulation 24:82–86

    Article  CAS  PubMed  Google Scholar 

  4. Dzurinko VL, Gurwood AS, Price JR (2004) Intravenous and indocyanine green angiography. Optometry 75(12):743–55

    Article  PubMed  Google Scholar 

  5. Raabe A, Beck J, Gerlach R et al (2003) Near-infrared indocyanine green video angiography: a new method for intraoperative assessment of vascular flow. Neurosurgery 52:132–139

    PubMed  Google Scholar 

  6. Woitzik J, Horn P, Vajkoczy P et al (2005) Intraoperative control of extracranial-intracranial bypass patency by near-infrared indocyanine green videoangiography. J Neurosurg 102:692–698

    Article  PubMed  Google Scholar 

  7. Desai ND, Miwa S, Kodama D et al (2005) Improving the quality of coronary bypass surgery with intraoperative angiography: validation of a new technique. J Am Coll Cardiol 46:1521–5

    Article  PubMed  Google Scholar 

  8. Siedek V, Waggershauser T, Berghaus A et al (2009) Intraoperative monitoring of intraarterial paraganglioma embolization by indocyaningreen fluorescence angiography. Eur Arch Otorhinolaryngol 266(9):1449–54

    Article  PubMed  Google Scholar 

  9. Kitai T, Inomoto T, Miwa M et al (2005) Fluorescence navigation with indocyanine green for detecting sentinel lymph nodes in breast cancer. Breast Cancer 12(3):211–215

    Article  PubMed  Google Scholar 

  10. Kusano M, Tajima Y, Yamazaki K et al (2008) Sentinel node mapping guided by indocyanine green fluorescence imaging: a new method for sentinel node navigation surgery in gastrointestinal cancer. Dig Surg 25:103–108

    Article  PubMed  Google Scholar 

  11. Alexander T, Macdonald R, Weir B et al (1996) Intraoperative angiography in cerebral aneurysm surgery: a prospective study of 100 craniotomies. Neurosurgery 39:10–17

    Article  CAS  PubMed  Google Scholar 

  12. Drake C, Allcock J (1973) Postoperative angiography and the “slipped” clip. J Neurosurg 39:683–689

    Article  CAS  PubMed  Google Scholar 

  13. Macdonald R, Wallace M, Kestle J (1993) Role of angiography following aneurysm surgery. J Neurosurg 79:826–832

    Article  CAS  PubMed  Google Scholar 

  14. Proust F, Hannequin D, Langlois O et al (1995) Causes of morbidity and mortality after ruptured aneurysm surgery in a series of 230 patients. The importance of control angiography. Stroke 26:1553–1557

    Article  CAS  PubMed  Google Scholar 

  15. Rauzzino MJ, Quinn CM, Fisher WS (1998) Angiography after aneurysm surgery: indications for “selective” angiography. Surg Neurol 49:32–40

    Article  CAS  PubMed  Google Scholar 

  16. Suzuki J, Kwak R, Katakura R (1980) Review of incompletely occluded surgically treated cerebral aneurysms. Surg Neurol 13:306–310

    CAS  PubMed  Google Scholar 

  17. Chiang V, Gailloud P, Murphy K et al (2002) Routine intraoperative angiography during aneurysm surgery. J Neurosurg 96:988–992

    Article  PubMed  Google Scholar 

  18. Katz J, Gologorsky Y, Tsiouris A et al (2006) Is routine intraoperative angiography in the surgical treatment of cerebral aneurysms justified? A consecutive series of 147 aneurysms. Neurosurgery 58:719–727

    Article  PubMed  Google Scholar 

  19. Klopfenstein J, Spetzler R, Kim L et al (2004) Comparison of routine and selective use of intraoperative angiography during aneurysm surgery: a prospective assessment. J Neurosurg 100:230–235

    Article  PubMed  Google Scholar 

  20. Amin-Hanjani S, Meglio G, Gatto R et al (2006) The utility of intraoperative blood flow measurement during aneurysm surgery using an ultrasonic perivascular flow probe. Neurosurgery 58:ONS 305–312

    Google Scholar 

  21. Bailes JE, Tantuwaya LS, Fukushima T et al (1997) Intraoperative microvascular Doppler sonography in aneurysm surgery. Neurosurgery 40:965–70

    Article  CAS  PubMed  Google Scholar 

  22. Zhao J, Wang Y, Zhao Y et al (2006) Neuroendoscope-assisted minimally invasive microsurgery for clipping intracranial aneurysms. Minim Invasive Neurosurg 49(6):335–41

    Article  CAS  PubMed  Google Scholar 

  23. Imizu S, Kato Y, Sangli A et al (2008) Assessment of incomplete clipping of aneurysms intraoperatively by a near-infrared indocyanine green-video angiography (Niicg-Va) integrated microscope. Minim Invasive Neurosurg 51:199–203

    Article  CAS  PubMed  Google Scholar 

  24. Oliveira M, Beck J, Seifert V et al (2007) Assessment of blood in perforating arteries during intraoperative near-infrared indocyanine green videoangiography. Neurosurgery 61(6 Suppl 3):1300–10

    Google Scholar 

  25. Raabe A, Nakaji P, Beck J et al (2005) Prospective evaluation of surgical microscope-integrated intraoperative near-infrared indocyanine green videoangiography during aneurysm surgery. J Neurosurg 103:982–989

    Article  PubMed  Google Scholar 

  26. Suzuki K, Kodama N, Sasaki T et al (2007) Confirmation of blood flow in perforating arteries using fluorescein cerebral angiography during aneurysm surgery. J Neurosurg 107:68–73

    Article  PubMed  Google Scholar 

  27. Keller E, Ishihara H, Nadler A et al (2002) Evaluation of brain toxicity following near infrared light exposure after indocyanine green dye injection. J Neurosci Methods 17(1):23–31

    Article  Google Scholar 

  28. Dashti R, Laakso A, Niemelä M et al (2009) Microscope-integrated near-infrared indocyanine green videoangiography during surgery of intracranial aneurysms: the Helsinki experience. Surg Neurol 71(5):543–50

    Article  PubMed  Google Scholar 

  29. Roessler K, Krawagna M, Dorfler A et al (2014) Essentials in intraoperative indocyanine green videoangiography assessment for intracranial aneurysm surgery: conclusions from 295 consecutively clipped aneurysms and review of the literature. Neurosurg Focus 36, E7

    Article  PubMed  Google Scholar 

  30. Bruneau M, Appelboom G, Rynkowski M et al (2013) Endoscope-integrated I.C.G. technology: first application during intracranial aneurysm surgery. Neurosurg Rev 36:77–84

    PubMed  Google Scholar 

  31. Nishiyama Y, Kinouchi H, Senbokuya N et al (2012) Endoscopic indocyanine green angiography in aneurysm surgery: an innovative method for intraoperative assessment of blood flow in vasculature hidden from microscopic view. J Neurosurg 117:302–8

    Article  PubMed  Google Scholar 

  32. Ferroli P, Ciceri E, Addis A et al (2008) Self-closing surgical clips for use in pericallosal artery-pericallosal artery side-to-side bypass. J Neurosurg 109(2):330–4

    Article  PubMed  Google Scholar 

  33. Peña-Tapia PG, Kemmling A, Czabanka M et al (2008) Identification of the optical cortical target point for extracranial-intracranial bypass surgery in patients with hemodynamic cerebrovascular insufficiency. J Neurosurg 108:655–661

    Article  PubMed  Google Scholar 

  34. Prinz V, Hecht N, Kato N et al (2014) FLOW 800 allows visualization of hemodynamic changes after extracranial-to-intracranial bypass surgery but not assessment of quantitative perfusion or flow. Neurosurgery 10(Suppl 2):231–9

    Article  PubMed  Google Scholar 

  35. Haga S, Nagata S, Uka A et al (2011) Near-infrared indocyanine green videoangiography for assessment of carotid endarterectomy. Acta Neurochir 153:1641–1644

    Article  PubMed  Google Scholar 

  36. Lee C-H, Jung YS, Yang H-J et al (2012) An innovative method for detecting surgical errors using indocyanine green angiography during carotid endarterectomy: a preliminary investigation. Acta Neurochir 154:67–73

    Article  PubMed  Google Scholar 

  37. Faber F, Thon K, Fesl G et al (2011) Enhanced analysis of intracerebral arteriovenous malformations by the intraoperative use of analytical indocyanine green videoangiography: technical note. Acta Neurochir 153:2181–2187

    Article  PubMed  Google Scholar 

  38. Hanggi D, Etminan N, Steiger H-J et al (2010) The impact of microscope-integrated intraoperative near-infrared indocyanine green videoangiography on surgery of arteriovenous malformations and dural arteriovenous fistulae. Neurosurgery 67:1094–1104

    Article  PubMed  Google Scholar 

  39. Killory BD, Nakaji P, Gonzales LF et al (2009) Prospective evaluation of surgical microscope-integrated intraoperative near-infrared indocyanine green angiography during cerebral arteriovenous malformation surgery. Neurosurgery 65:456–462

    Article  PubMed  Google Scholar 

  40. Takagi Y, Kikuta K, Nozaki K et al (2007) Detection of a residual nidus by surgical microscope-integrated intraoperative near-infrared indocyanine green videoangiography in a child with a cerebral arteriovenous malformation. J Neurosurg 107(5 Suppl):416–8

    PubMed  Google Scholar 

  41. Zaidi HA, Abia AA, Nakaji P et al (2014) Indocyanine green angiography in the surgical management of cerebral arteriovenous malformations: lessons learned in 130 consecutive cases. Oper Neurosurg 10:246–251

    Article  Google Scholar 

  42. Hanel RA, Nakaji P, Spetzler RF (2010) Use of microscope-integrated near-infrared indocyanine green videoangiography in the surgical treatment of spinal dural arteriovenous fistulae. Neurosurgery 66:978–85

    Article  PubMed  Google Scholar 

  43. Oh JK, Shin HC, Kim TY et al (2011) Intraoperative indocyanine green video-angiography. Spine 36:E1578–E1580

    Article  PubMed  Google Scholar 

  44. Horie N, So G, Debata A et al (2012) Intra-arterial indocyanine green angiography in the management of spinal arteriovenous fistulae. Spine 37:E264–267

    Article  PubMed  Google Scholar 

  45. Murakami K, Endo T, Tominaga T (2012) An analysis of flow dynamics in cerebral cavernous malformation and orbital cavernous angioma using indocyanine green videoangiography. Acta Neurochir 154:1169–1175

    Article  PubMed  Google Scholar 

  46. Endo T, Aizawa-Kohama M, Nagamatsu A et al (2013) Use of microscope-integrated near-infrared indocyanine green videoangiography in the surgical treatment of intramedullary cavernous malformations: report of 8 cases. J Neurosurg Spine 18:443–449

    Article  PubMed  Google Scholar 

  47. Niemela M, Kivelev J, Hernesniemi J (2012) The clinical value of indocyanine green angiography in the microsurgery of brain cavernomas is very limited. Acta Neurochir 154:1177–1178

    Article  PubMed  Google Scholar 

  48. Tamura Y, Hirota Y, Miyata S et al (2012) The use of intraoperative near-infrared indocyanine green videoangiography in the microscopic resection of hemangioblastomas. Acta Neurochir 154:1407–1412

    Article  PubMed  Google Scholar 

  49. Hojo M, Arakawa Y, Funaki T et al (2014) Usefulness of tumor blood flow imaging by intraoperative indocyanine green videoangiography in hemangioblastoma surgery. World Neurosurg 82(3/4):e495–e501

    Article  PubMed  Google Scholar 

  50. Hao S, Li D, Ma G et al (2013) Application of intraoperative indocyanine green videoangiography for resection of spinal cord hemangioblastoma: advantages and limitations. J Clin Neurosci 20:1269–1275

    Article  PubMed  Google Scholar 

  51. D’Avella E, Volpin F, Manara R et al (2013) Indocyanine green videoangiography (ICGV)-guided surgery of parasagittal meningiomas occluding the superior sagittal sinus (SSS). Acta Neurochir 155:415–420

    Article  PubMed  Google Scholar 

  52. Ferroli P, Acerbi F, Tringali G et al (2011) Venous sacrifice in neurosurgery: new insights from venous indocyanine green videoangiography. J Neurosurg 115:18–23

    Article  PubMed  Google Scholar 

  53. Litvack ZN, Zada G, Laws ER Jr (2012) Indocyanine green fluorescence endoscopy for visual differentiation of pituitary tumor from surrounding structures. J Neurosurg 116:935–941

    Article  PubMed  Google Scholar 

  54. Woitzik J, Peña-Tapia PG, Schneider UC et al (2006) Cortical perfusion measurement by indocyaninegreen videoangiography in patients undergoing hemicraniectomy for malignant stroke. Stroke 37:1549–1551

    Article  PubMed  Google Scholar 

  55. Schubert GA, Seiz-Rosenhagen M, Ortier M et al (2012) Cortical indocyanine green videography for quantification of acute hypoperfusion after subarachnoid hemorrhage: a feasibility study. Neurosurgery 71:ons260–267

    Google Scholar 

  56. Manley DM, Xiang B, Kupriyanov VV (2007) Visualization and grading of regional ischemia in pigs in vivo using near-infrared and thermal imaging. Can J Physiol Pharmacol 85(3–4):382–95

    Article  CAS  PubMed  Google Scholar 

  57. Davis SC, Pogue BW, Springett R et al (2008) Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue. Rev Sci Instrum 79(6):064302

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ntziachristos V, Tung CH, Bremer C et al (2002) Fluorescence molecular tomography resolves protease activity in vivo. Nat Med 8(7):757–60

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiaki Kumon M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Kumon, Y., Watanabe, H., Ohue, S., Ohnishi, T. (2016). ICG Videoangiography in Neurosurgical Procedures. In: Kusano, M., Kokudo, N., Toi, M., Kaibori, M. (eds) ICG Fluorescence Imaging and Navigation Surgery. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55528-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55528-5_4

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55527-8

  • Online ISBN: 978-4-431-55528-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics