Skip to main content

Structure-Functional Analysis of Channelrhodopsins

  • Chapter
Optogenetics

Abstract

Channelrhodopsin (ChR) was the first light-gated cation channel to be discovered from green algae. Since the inward flow of cations triggers neuron firing, neurons expressing ChRs can be optically controlled, even within freely moving mammals. Although ChR has been broadly applied to neuroscience research, little is known about its molecular mechanisms. In this chapter, we first describe the simple background of rhodopsin family proteins including ChR, and how optogenetics technology has been established since the discovery of ChR in 2002. We later introduce recent findings about the structure-functional relationship of ChR by especially focusing on a paper about the crystal structure of chimeric ChR (C1C2). After we explain the molecular architecture, the initial photoreactions, the ion-conducting pathway, and the putative channel gates of C1C2, we use three recent studies as examples to further explore the possibility of the structure-based engineering of ChR variants with properties that are more ideal for use as optogenetics tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adamantidis AR, Zhang F, Aravanis AM et al (2007) Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450:420–424

    Article  CAS  PubMed  Google Scholar 

  • Bamann C, Gueta R, Kleinlogel S et al (2010) Structural guidance of the photocycle of channelrhodopsin-2 by an interhelical hydrogen bond. Biochemistry (Mosc) 49:267–278

    Article  CAS  Google Scholar 

  • Berndt A, Yizhar O, Gunaydin LA et al (2009) Bi-stable neural state switches. Nat Neurosci 12:229–234

    Article  CAS  PubMed  Google Scholar 

  • Berndt A, Schoenenberger P, Mattis J et al (2011) High-efficiency channelrhodopsins for fast neuronal stimulation at low light levels. Proc Natl Acad Sci U S A 108:7595–7600

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Berndt A, Lee SY, Ramakrishnan C et al (2014) Structure-guided transformation of channelrhodopsin into a light-activated chloride channel. Science 344:420–424

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Berthold P, Tsunoda SP, Ernst OP et al (2008) Channelrhodopsin-1 initiates phototaxis and photophobic responses in chlamydomonas by immediate light-induced depolarization. Plant Cell 20:1665–1677

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bi A, Cui J, Ma YP et al (2006) Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 50:23–33

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bogomolni RA, Spudich JL (1982) Identification of a third rhodopsin-like pigment in phototactic Halobacterium halobium. Proc Natl Acad Sci U S A 79:6250–6254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boyden ES, Zhang F, Bamberg E et al (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268

    Article  CAS  PubMed  Google Scholar 

  • Chaudhury D, Walsh JJ, Friedman AK et al (2012) Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature 493:532–6

    Google Scholar 

  • Ciocchi S, Herry C, Grenier F et al (2010) Encoding of conditioned fear in central amygdala inhibitory circuits. Nature 468:277–282

    Article  CAS  PubMed  Google Scholar 

  • Deininger W, Kroger P, Hegemann U et al (1995) Chlamyrhodopsin represents a new type of sensory photoreceptor. EMBO J 14:5849–5858

    CAS  PubMed Central  PubMed  Google Scholar 

  • Deisseroth K (2011) Optogenetics. Nat Methods 8:26–29

    Article  CAS  PubMed  Google Scholar 

  • Dixon RA, Kobilka BK, Strader DJ et al (1986) Cloning of the gene and cDNA for mammalian beta-adrenergic receptor and homology with rhodopsin. Nature 321:75–79

    Article  CAS  PubMed  Google Scholar 

  • Doyle DA, Morais Cabral J, Pfuetzner RA et al (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77

    Article  CAS  PubMed  Google Scholar 

  • Dutzler R, Campbell EB, Cadene M et al (2002) X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. Nature 415:287–294

    Article  CAS  PubMed  Google Scholar 

  • Eisenhauer K, Kuhne J, Ritter E et al (2012) In channelrhodopsin-2 Glu-90 is crucial for ion selectivity and is deprotonated during the photocycle. J Biol Chem 287:6904–6911

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gaiko O, Dempski RE (2013) Transmembrane domain three contributes to the ion conductance pathway of channelrhodopsin-2. Biophys J 104:1230–1237

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gordeliy VI, Labahn J, Moukhametzianov R et al (2002) Molecular basis of transmembrane signalling by sensory rhodopsin II-transducer complex. Nature 419:484–487

    Article  CAS  PubMed  Google Scholar 

  • Govorunova EG, Sineshchekov OA, Li H et al (2013) Characterization of a highly efficient blue-shifted channelrhodopsin from the marine alga Platymonas subcordiformis. J Biol Chem 288:29911–29922

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gunaydin LA, Yizhar O, Berndt A et al (2010) Ultrafast optogenetic control. Nat Neurosci 13:387–392

    Article  CAS  PubMed  Google Scholar 

  • Hou X, Pedi L, Diver MM et al (2012) Crystal structure of the calcium release-activated calcium channel Orai. Science 338:1308–1313

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ishizuka T, Kakuda M, Araki R et al (2006) Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels. Neurosci Res 54:85–94

    Article  CAS  PubMed  Google Scholar 

  • Ji ZG, Ishizuka T, Yawo H (2012) Channelrhodopsins-their potential in gene therapy for neurological disorders. Neurosci Res 196:29–47

    Google Scholar 

  • Kato HE, Zhang F, Yizhar O et al (2012) Crystal structure of the channelrhodopsin light-gated cation channel. Nature 482:369–374

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kianianmomeni A, Stehfest K, Nematollahi G et al (2009) Channelrhodopsins of Volvox carteri are photochromic proteins that are specifically expressed in somatic cells under control of light, temperature, and the sex inducer. Plant Physiol 151:347–366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Klapoetke NC, Murata Y, Kim SS et al (2014) Independent optical excitation of distinct neural populations. Nat Methods 11:338–346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kleinlogel S, Feldbauer K, Dempski RE et al (2011) Ultra light-sensitive and fast neuronal activation with the Ca(2)+ −permeable channelrhodopsin CatCh. Nat Neurosci 14:513–518

    Article  CAS  PubMed  Google Scholar 

  • Krause N, Engelhard C, Heberle J et al (2013) Structural differences between the closed and open states of channelrhodopsin-2 as observed by EPR spectroscopy. FEBS Lett 587:3309–3313

    Article  CAS  PubMed  Google Scholar 

  • Kravitz AV, Freeze BS, Parker PR et al (2010) Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466:622–626

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li X, Gutierrez DV, Hanson MG et al (2005) Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc Natl Acad Sci U S A 102:17816–17821

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lin JY, Lin MZ, Steinbach P et al (2009) Characterization of engineered channelrhodopsin variants with improved properties and kinetics. Biophys J 96:1803–1814

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lorenz-Fonfria VA, Resler T, Krause N et al (2013) Transient protonation changes in channelrhodopsin-2 and their relevance to channel gating. Proc Natl Acad Sci U S A 110:E1273–E1281

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matsuno-Yagi A, Mukohata Y (1977) Two possible roles of bacteriorhodopsin; a comparative study of strains of Halobacterium halobium differing in pigmentation. Biochem Biophys Res Commun 78:237–243

    Article  CAS  PubMed  Google Scholar 

  • Muller M, Bamann C, Bamberg E et al (2011) Projection structure of channelrhodopsin-2 at 6 A resolution by electron crystallography. J Mol Biol 414:86–95

    Article  PubMed  Google Scholar 

  • Nagel G, Ollig D, Fuhrmann M et al (2002) Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296:2395–2398

    Article  CAS  PubMed  Google Scholar 

  • Nagel G, Szellas T, Huhn W et al (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100:13940–13945

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nagel G, Brauner M, Liewald JF et al (2005) Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr Biol 15:2279–2284

    Google Scholar 

  • Oesterhelt D, Stoeckenius W (1971) Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat New Biol 233:149–152

    Article  CAS  PubMed  Google Scholar 

  • Payandeh J, Scheuer T, Zheng N et al (2011) The crystal structure of a voltage-gated sodium channel. Nature 475:353–358

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pebay-Peyroula E, Rummel G, Rosenbusch JP et al (1997) X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. Science 277:1676–1681

    Article  CAS  PubMed  Google Scholar 

  • Ran T, Ozorowski G, Gao Y et al (2013) Cross-protomer interaction with the photoactive site in oligomeric proteorhodopsin complexes. Acta Crystallogr D Biol Crystallogr 69:1965–1980

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen SG, Choi HJ, Rosenbaum DM et al (2007) Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450:383–387

    Article  CAS  PubMed  Google Scholar 

  • Richards R, Dempski RE (2012) Re-introduction of transmembrane serine residues reduce the minimum pore diameter of channelrhodopsin-2. PLoS One 7:e50018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sattig T, Rickert C, Bamberg E et al (2013) Light-induced movement of the transmembrane helix B in channelrhodopsin-2. Angewandte Chemie 52:9705–9708

    Article  CAS  PubMed  Google Scholar 

  • Sineshchekov OA, Litvin FF, Keszthelyi L (1990) Two components of photoreceptor potential in phototaxis of the flagellated green alga Haematococcus pluvialis. Biophys J 57:33–39

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sineshchekov OA, Jung KH, Spudich JL (2002) Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 99:8689–8694

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Spudich JL, Yang CS, Jung KH et al (2000) Retinylidene proteins: structures and functions from archaea to humans. Annu Rev Cell Dev Biol 16:365–392

    Article  CAS  PubMed  Google Scholar 

  • Stabell B, Stabell U (2009) Duplicity theory of vision. Cambridge University Press

    Book  Google Scholar 

  • Sudo Y, Ihara K, Kobayashi S et al (2011) A microbial rhodopsin with a unique retinal composition shows both sensory rhodopsin II and bacteriorhodopsin-like properties. J Biol Chem 286:5967–5976

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Suzuki T, Yamasaki K, Fujita S et al (2003) Archaeal-type rhodopsins in Chlamydomonas: model structure and intracellular localization. Biochem Biophys Res Commun 301:711–717

    Article  CAS  PubMed  Google Scholar 

  • Takeshita K, Sakata S, Yamashita E et al (2014) X-ray crystal structure of voltage-gated proton channel. Nat Struct Mol Biol 21:352–357

    Article  CAS  PubMed  Google Scholar 

  • Tanimoto S, Sugiyama Y, Takahashi T et al (2012) Involvement of glutamate 97 in ion influx through photo-activated channelrhodopsin-2. Neurosci Res 75:13–22

    Google Scholar 

  • Wang H, Sugiyama Y, Hikima T et al (2009) Molecular determinants differentiating photocurrent properties of two channelrhodopsins from chlamydomonas. J Biol Chem 284:5685–5696

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Nossoni Z, Berbasova T et al (2012) Tuning the electronic absorption of protein-embedded all-trans-retinal. Science 338:1340–1343

    Google Scholar 

  • Watanabe HC, Welke K, Sindhikara DJ et al (2013) Towards an understanding of channelrhodopsin function: simulations lead to novel insights of the channel mechanism. J Mol Biol 425:1795–1814

    Article  CAS  PubMed  Google Scholar 

  • Wen L, Wang H, Tanimoto S et al (2010) Opto-current-clamp actuation of cortical neurons using a strategically designed channelrhodopsin. PLoS One 5:e12893

    Article  PubMed Central  PubMed  Google Scholar 

  • Wietek J, Wiegert JS, Adeishvili N et al (2014) Conversion of channelrhodopsin into a light-gated chloride channel. Science 344:409–412

    Article  CAS  PubMed  Google Scholar 

  • Yizhar O, Fenno LE, Prigge M et al (2011) Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477:171–178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki E. Kato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Kato, H.E., Ishitani, R., Nureki, O. (2015). Structure-Functional Analysis of Channelrhodopsins. In: Yawo, H., Kandori, H., Koizumi, A. (eds) Optogenetics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55516-2_3

Download citation

Publish with us

Policies and ethics