Abstract
Channelrhodopsin (ChR) was the first light-gated cation channel to be discovered from green algae. Since the inward flow of cations triggers neuron firing, neurons expressing ChRs can be optically controlled, even within freely moving mammals. Although ChR has been broadly applied to neuroscience research, little is known about its molecular mechanisms. In this chapter, we first describe the simple background of rhodopsin family proteins including ChR, and how optogenetics technology has been established since the discovery of ChR in 2002. We later introduce recent findings about the structure-functional relationship of ChR by especially focusing on a paper about the crystal structure of chimeric ChR (C1C2). After we explain the molecular architecture, the initial photoreactions, the ion-conducting pathway, and the putative channel gates of C1C2, we use three recent studies as examples to further explore the possibility of the structure-based engineering of ChR variants with properties that are more ideal for use as optogenetics tools.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adamantidis AR, Zhang F, Aravanis AM et al (2007) Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450:420–424
Bamann C, Gueta R, Kleinlogel S et al (2010) Structural guidance of the photocycle of channelrhodopsin-2 by an interhelical hydrogen bond. Biochemistry (Mosc) 49:267–278
Berndt A, Yizhar O, Gunaydin LA et al (2009) Bi-stable neural state switches. Nat Neurosci 12:229–234
Berndt A, Schoenenberger P, Mattis J et al (2011) High-efficiency channelrhodopsins for fast neuronal stimulation at low light levels. Proc Natl Acad Sci U S A 108:7595–7600
Berndt A, Lee SY, Ramakrishnan C et al (2014) Structure-guided transformation of channelrhodopsin into a light-activated chloride channel. Science 344:420–424
Berthold P, Tsunoda SP, Ernst OP et al (2008) Channelrhodopsin-1 initiates phototaxis and photophobic responses in chlamydomonas by immediate light-induced depolarization. Plant Cell 20:1665–1677
Bi A, Cui J, Ma YP et al (2006) Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 50:23–33
Bogomolni RA, Spudich JL (1982) Identification of a third rhodopsin-like pigment in phototactic Halobacterium halobium. Proc Natl Acad Sci U S A 79:6250–6254
Boyden ES, Zhang F, Bamberg E et al (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268
Chaudhury D, Walsh JJ, Friedman AK et al (2012) Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature 493:532–6
Ciocchi S, Herry C, Grenier F et al (2010) Encoding of conditioned fear in central amygdala inhibitory circuits. Nature 468:277–282
Deininger W, Kroger P, Hegemann U et al (1995) Chlamyrhodopsin represents a new type of sensory photoreceptor. EMBO J 14:5849–5858
Deisseroth K (2011) Optogenetics. Nat Methods 8:26–29
Dixon RA, Kobilka BK, Strader DJ et al (1986) Cloning of the gene and cDNA for mammalian beta-adrenergic receptor and homology with rhodopsin. Nature 321:75–79
Doyle DA, Morais Cabral J, Pfuetzner RA et al (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77
Dutzler R, Campbell EB, Cadene M et al (2002) X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. Nature 415:287–294
Eisenhauer K, Kuhne J, Ritter E et al (2012) In channelrhodopsin-2 Glu-90 is crucial for ion selectivity and is deprotonated during the photocycle. J Biol Chem 287:6904–6911
Gaiko O, Dempski RE (2013) Transmembrane domain three contributes to the ion conductance pathway of channelrhodopsin-2. Biophys J 104:1230–1237
Gordeliy VI, Labahn J, Moukhametzianov R et al (2002) Molecular basis of transmembrane signalling by sensory rhodopsin II-transducer complex. Nature 419:484–487
Govorunova EG, Sineshchekov OA, Li H et al (2013) Characterization of a highly efficient blue-shifted channelrhodopsin from the marine alga Platymonas subcordiformis. J Biol Chem 288:29911–29922
Gunaydin LA, Yizhar O, Berndt A et al (2010) Ultrafast optogenetic control. Nat Neurosci 13:387–392
Hou X, Pedi L, Diver MM et al (2012) Crystal structure of the calcium release-activated calcium channel Orai. Science 338:1308–1313
Ishizuka T, Kakuda M, Araki R et al (2006) Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels. Neurosci Res 54:85–94
Ji ZG, Ishizuka T, Yawo H (2012) Channelrhodopsins-their potential in gene therapy for neurological disorders. Neurosci Res 196:29–47
Kato HE, Zhang F, Yizhar O et al (2012) Crystal structure of the channelrhodopsin light-gated cation channel. Nature 482:369–374
Kianianmomeni A, Stehfest K, Nematollahi G et al (2009) Channelrhodopsins of Volvox carteri are photochromic proteins that are specifically expressed in somatic cells under control of light, temperature, and the sex inducer. Plant Physiol 151:347–366
Klapoetke NC, Murata Y, Kim SS et al (2014) Independent optical excitation of distinct neural populations. Nat Methods 11:338–346
Kleinlogel S, Feldbauer K, Dempski RE et al (2011) Ultra light-sensitive and fast neuronal activation with the Ca(2)+ −permeable channelrhodopsin CatCh. Nat Neurosci 14:513–518
Krause N, Engelhard C, Heberle J et al (2013) Structural differences between the closed and open states of channelrhodopsin-2 as observed by EPR spectroscopy. FEBS Lett 587:3309–3313
Kravitz AV, Freeze BS, Parker PR et al (2010) Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466:622–626
Li X, Gutierrez DV, Hanson MG et al (2005) Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc Natl Acad Sci U S A 102:17816–17821
Lin JY, Lin MZ, Steinbach P et al (2009) Characterization of engineered channelrhodopsin variants with improved properties and kinetics. Biophys J 96:1803–1814
Lorenz-Fonfria VA, Resler T, Krause N et al (2013) Transient protonation changes in channelrhodopsin-2 and their relevance to channel gating. Proc Natl Acad Sci U S A 110:E1273–E1281
Matsuno-Yagi A, Mukohata Y (1977) Two possible roles of bacteriorhodopsin; a comparative study of strains of Halobacterium halobium differing in pigmentation. Biochem Biophys Res Commun 78:237–243
Muller M, Bamann C, Bamberg E et al (2011) Projection structure of channelrhodopsin-2 at 6 A resolution by electron crystallography. J Mol Biol 414:86–95
Nagel G, Ollig D, Fuhrmann M et al (2002) Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296:2395–2398
Nagel G, Szellas T, Huhn W et al (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100:13940–13945
Nagel G, Brauner M, Liewald JF et al (2005) Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr Biol 15:2279–2284
Oesterhelt D, Stoeckenius W (1971) Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat New Biol 233:149–152
Payandeh J, Scheuer T, Zheng N et al (2011) The crystal structure of a voltage-gated sodium channel. Nature 475:353–358
Pebay-Peyroula E, Rummel G, Rosenbusch JP et al (1997) X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. Science 277:1676–1681
Ran T, Ozorowski G, Gao Y et al (2013) Cross-protomer interaction with the photoactive site in oligomeric proteorhodopsin complexes. Acta Crystallogr D Biol Crystallogr 69:1965–1980
Rasmussen SG, Choi HJ, Rosenbaum DM et al (2007) Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450:383–387
Richards R, Dempski RE (2012) Re-introduction of transmembrane serine residues reduce the minimum pore diameter of channelrhodopsin-2. PLoS One 7:e50018
Sattig T, Rickert C, Bamberg E et al (2013) Light-induced movement of the transmembrane helix B in channelrhodopsin-2. Angewandte Chemie 52:9705–9708
Sineshchekov OA, Litvin FF, Keszthelyi L (1990) Two components of photoreceptor potential in phototaxis of the flagellated green alga Haematococcus pluvialis. Biophys J 57:33–39
Sineshchekov OA, Jung KH, Spudich JL (2002) Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 99:8689–8694
Spudich JL, Yang CS, Jung KH et al (2000) Retinylidene proteins: structures and functions from archaea to humans. Annu Rev Cell Dev Biol 16:365–392
Stabell B, Stabell U (2009) Duplicity theory of vision. Cambridge University Press
Sudo Y, Ihara K, Kobayashi S et al (2011) A microbial rhodopsin with a unique retinal composition shows both sensory rhodopsin II and bacteriorhodopsin-like properties. J Biol Chem 286:5967–5976
Suzuki T, Yamasaki K, Fujita S et al (2003) Archaeal-type rhodopsins in Chlamydomonas: model structure and intracellular localization. Biochem Biophys Res Commun 301:711–717
Takeshita K, Sakata S, Yamashita E et al (2014) X-ray crystal structure of voltage-gated proton channel. Nat Struct Mol Biol 21:352–357
Tanimoto S, Sugiyama Y, Takahashi T et al (2012) Involvement of glutamate 97 in ion influx through photo-activated channelrhodopsin-2. Neurosci Res 75:13–22
Wang H, Sugiyama Y, Hikima T et al (2009) Molecular determinants differentiating photocurrent properties of two channelrhodopsins from chlamydomonas. J Biol Chem 284:5685–5696
Wang W, Nossoni Z, Berbasova T et al (2012) Tuning the electronic absorption of protein-embedded all-trans-retinal. Science 338:1340–1343
Watanabe HC, Welke K, Sindhikara DJ et al (2013) Towards an understanding of channelrhodopsin function: simulations lead to novel insights of the channel mechanism. J Mol Biol 425:1795–1814
Wen L, Wang H, Tanimoto S et al (2010) Opto-current-clamp actuation of cortical neurons using a strategically designed channelrhodopsin. PLoS One 5:e12893
Wietek J, Wiegert JS, Adeishvili N et al (2014) Conversion of channelrhodopsin into a light-gated chloride channel. Science 344:409–412
Yizhar O, Fenno LE, Prigge M et al (2011) Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477:171–178
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer Japan
About this chapter
Cite this chapter
Kato, H.E., Ishitani, R., Nureki, O. (2015). Structure-Functional Analysis of Channelrhodopsins. In: Yawo, H., Kandori, H., Koizumi, A. (eds) Optogenetics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55516-2_3
Download citation
DOI: https://doi.org/10.1007/978-4-431-55516-2_3
Publisher Name: Springer, Tokyo
Print ISBN: 978-4-431-55515-5
Online ISBN: 978-4-431-55516-2
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)