Advertisement

Optogenetics pp 241-248 | Cite as

Neuroscientific Frontline of Optogenetics

  • Akihiro YamanakaEmail author

Abstract

Optogenetics is a recently developed experimental technique to control the activity of neurons using light. Optogenetics shows its power to reveal the physiological role of specific neural circuits in the brain. In particular, the manipulation of specific types of neurons using optogenetics with high-accuracy timing enables us to analyze causality between neural activity and initiation of animal behaviors. However, to manipulate the activity of specific neurons in vivo, two steps need to be fulfilled to succeed in the manipulation of neural activity and control of the behavior of individual animals. Step 1: an adequate number of molecules of light-activated protein must be expressed in the cell membrane of the neurons of interest. Step 2: the optical system must illuminate the targeted neurons with enough intensity to activate the light-activated protein. In this chapter, I illuminate the tricks to succeeding in the manipulation of targeted neurons in vivo using optogenetics to control animal behaviors.

Keywords

Behavior Virus vector Transgenic animal Cre/loxP tTA/TetO LED Laser 

References

  1. Adamantidis AR, Zhang F, Aravanis AM et al (2007) Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450(7168):420–424PubMedCrossRefGoogle Scholar
  2. Armbruster BN, Li X, Pausch MH et al (2007) Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci U S A 104(12):5163–5168PubMedCentralPubMedCrossRefGoogle Scholar
  3. Boyden ES, Zhang F, Bamberg E et al (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8(9):1263–1268PubMedCrossRefGoogle Scholar
  4. Imayoshi I, Tabuchi S, Hirano K et al (2013) Light-induced silencing of neural activity in Rosa26 knock-in mice conditionally expressing the microbial halorhodopsin eNpHR2.0. Neurosci Res 75(1):53–58PubMedCrossRefGoogle Scholar
  5. Ji ZG, Ito S, Honjoh T et al (2012) Light-evoked somatosensory perception of transgenic rats that express channelrhodopsin-2 in dorsal root ganglion cells. PLoS One 7(3):e32699PubMedCentralPubMedCrossRefGoogle Scholar
  6. Kravitz AV, Freeze BS, Parker PR et al (2010) Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466(7306):622–626PubMedCentralPubMedCrossRefGoogle Scholar
  7. LeChasseur Y, Dufour S, Lavertu G et al (2011) A microprobe for parallel optical and electrical recordings from single neurons in vivo. Nat Methods 8(4):319–325PubMedCrossRefGoogle Scholar
  8. Liu X, Ramirez S, Pang PT et al (2012) Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484(7394):381–385PubMedCentralPubMedCrossRefGoogle Scholar
  9. Madisen L, Mao T, Koch H et al (2012) A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat Neurosci 15(5):793–802PubMedCentralPubMedCrossRefGoogle Scholar
  10. Magnus CJ, Lee PH, Atasoy D et al (2011) Chemical and genetic engineering of selective ion channel-ligand interactions. Science 333(6047):1292–1296PubMedCentralPubMedCrossRefGoogle Scholar
  11. Nagel G, Brauner M, Liewald JF et al (2005) Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr Biol 15(24):2279–2284Google Scholar
  12. Tanaka KF, Matsui K, Sasaki T et al (2012) Expanding the repertoire of optogenetically targeted cells with an enhanced gene expression system. Cell Rep 2(2):397–406PubMedCrossRefGoogle Scholar
  13. Tsunematsu T, Kilduff TS, Boyden ES et al (2011) Acute optogenetic silencing of orexin/hypocretin neurons induces slow-wave sleep in mice. J Neurosci 31(29):10529–10539PubMedCrossRefGoogle Scholar
  14. Zhang F, Gradinaru V, Adamantidis AR et al (2010) Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nat Protoc 5(3):439–456PubMedCrossRefGoogle Scholar
  15. Zhao S, Ting JT, Atallah HE et al (2011) Cell type-specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nat Methods 8(9):745–752PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  1. 1.Research Institute of Environmental MedicineNagoya UniversityNagoyaJapan

Personalised recommendations