Optogenetics pp 227-237 | Cite as

Optogenetics Research Using the Mouse as a Model System

  • Kenji F. TanakaEmail author


Smooth progress in the field of optogenetic research can be, as the suffix ‘-genetics’ indicates, expected using biological models that provide conditions suitable for genetic control or gene manipulation. The artificial expression of opsin molecules is expected to be carried out smoothly in mice compared with rats or non-human primates because of established inheritable genetic modification technologies in this species. However, when compared with the nematode or the fly, there are still many difficulties in the expression of opsin in mice if flexible gene manipulation is attempted.


Mouse genetics Tet-system Cre-loxP system BAC transgenic KENGE-tet β-actin gene 


  1. Arenkiel BR, Peca J, Davison IG et al (2007) In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2. Neuron 54:205–218PubMedCentralPubMedCrossRefGoogle Scholar
  2. Beppu K, Sasaki T, Tanaka KF et al (2014) Optogenetic countering of glial acidosis suppresses glial glutamate release and ischemic brain damage. Neuron 81:314–320PubMedCrossRefGoogle Scholar
  3. Boyden ES, Zhang F, Bamberg E et al (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268PubMedCrossRefGoogle Scholar
  4. Chuhma N, Tanaka KF, Hen R et al (2011) Functional connectome of the striatal medium spiny neuron. J Neurosci 31:1183–1192PubMedCentralPubMedCrossRefGoogle Scholar
  5. Gong S, Kus L, Heintz N (2010) Rapid bacterial artificial chromosome modification for large-scale mouse transgenesis. Nat Protoc 5:1678–1696PubMedCentralPubMedCrossRefGoogle Scholar
  6. Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A 89:5547–5551PubMedCentralPubMedCrossRefGoogle Scholar
  7. Lin JY, Lin MZ, Steinbach P et al (2009) Characterization of engineered channelrhodopsin variants with improved properties and kinetics. Biophys J 96:1803–1814PubMedCentralPubMedCrossRefGoogle Scholar
  8. Madisen L, Zwingman TA, Sunkin SM et al (2010) A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 13:133–140PubMedCentralPubMedCrossRefGoogle Scholar
  9. Madisen L, Mao T, Koch H et al (2012) A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat Neurosci 15:793–802PubMedCentralPubMedCrossRefGoogle Scholar
  10. Miyazaki KW, Miyazaki K, Tanaka KF et al (2014) Optogenetic activation of dorsal raphe Serotonin neurons enhances patience for future rewards. Curr Biol. doi: 10.1016/j.cub.2014.07.041 PubMedGoogle Scholar
  11. Nagy A (2000) Cre recombinase: the universal reagent for genome tailoring. Genesis 26:99–109PubMedCrossRefGoogle Scholar
  12. Ohmura Y, Tanaka KF, Tsunematsu T et al (2014) Optogenetic activation of serotonergic neurons enhances anxiety-like behaviour in mice. Int J Neuropsychopharmacol 21:1–7Google Scholar
  13. Tanaka KF, Ahmari SE, Leonardo ED et al (2010) Flexible Accelerated STOP Tetracycline operator-knockin (FAST): a versatile and efficient new gene modulating system. Biol Psychiatry 67:770–773PubMedCentralPubMedCrossRefGoogle Scholar
  14. Tanaka KF, Matsui K, Sasaki T et al (2012) Expanding the repertoire of optogenetically targeted cells with an enhanced gene expression system. Cell Rep 2:397–406PubMedCrossRefGoogle Scholar
  15. Ting JT, Feng G (2013) Development of transgenic animals for optogenetic manipulation of mammalian nervous system function: progress and prospects for behavioral neuroscience. Behav Brain Res 255:3–18PubMedCentralPubMedCrossRefGoogle Scholar
  16. Tsunematsu T, Tabuchi S, Tanaka KF et al (2013) Long-lasting silencing of orexin/hypocretin neurons using archaerhodopsin induces slow-wave sleep in mice. Behav Brain Res 255:64–74PubMedCrossRefGoogle Scholar
  17. Tsunematsu T, Ueno T, Tabuchi S et al (2014) Optogenetic manipulation of activity and temporally controlled cell-specific ablation reveal a role for MCH neurons in sleep/wake regulation. J Neurosci 34:6896–6909PubMedCentralPubMedCrossRefGoogle Scholar
  18. Yamazaki Y, Fujiwara H, Kaneko K et al (2014) Short- and long-term functional plasticity of white matter induced by oligodendrocyte depolarization in the hippocampus. Glia 62:1299–1312PubMedCrossRefGoogle Scholar
  19. Yizhar O, Fenno LE, Davidson TJ et al (2011) Optogenetics in neural systems. Neuron 71:9–34PubMedCrossRefGoogle Scholar
  20. Zhao S, Ting JT, Atallah HE et al (2011) Cell type–specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nat Methods 8:745–752PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  1. 1.Department of NeuropsychiatryKeio University School of MedicineTokyoJapan

Personalised recommendations