Optogenetics pp 213-226 | Cite as

Optogenetics in Caenorhabditis elegans

  • Yuki TsukadaEmail author
  • Ikue Mori


With a compact neural circuit consisting of entirely mapped 302 neurons, Caenorhabditis elegans plays an important role in the development and application of optogenetics. Application of optogenetics in C. elegans accelerates the studies of neural circuits by offering the tools that drastically change experimental designs with increasing accessibility for neural activity. Combination with a different approach, such as electrophysiology, expands the potential of both optogenetics and other approaches by increasing resolution of elucidation. Moreover, the technologies specifically developed in combination with optogenetics, such as patterned illumination, provide new tools to interrogate neural functions. In this chapter, we first introduce the reasons to use optogenetics in C. elegans studies, and discuss the technical issues of optogenetics, especially for C. elegans. We then review early and recent milestone works using optogenetics to investigate neural and behavioral mechanisms. Note that, in this chapter, the term ‘optogenetics’ includes both imaging with fluorescence probes and neural activity manipulation using opsins.


Caenorhabditis elegans C. elegans Neural circuit Behavioral analysis Photo-electrophysiology Tracking Patterned illumination 


  1. Akerboom J, Carreras Calderón N, Tian L et al (2013) Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front Mol Neurosci 6:2. doi: 10.3389/fnmol.2013.00002 PubMedCentralPubMedCrossRefGoogle Scholar
  2. Boulin T, Hobert O (2012) From genes to function: the C. elegans genetic toolbox. WIREs Dev Biol 1:114–137CrossRefGoogle Scholar
  3. Boyden ES, Zhang F, Bamberg E et al (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268PubMedCrossRefGoogle Scholar
  4. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94Google Scholar
  5. Chalfie M, Sulston JE, White JG et al (1985) The neural circuit for touch sensitivity in Caenorhabditis elegans. J Neurosci 5:956–964PubMedGoogle Scholar
  6. Clark DA, Biron D, Sengupta P et al (2006) The AFD sensory neurons encode multiple functions underlying thermotactic behavior in Caenorhabditis elegans. J Neurosci 26:7444–7451PubMedCrossRefGoogle Scholar
  7. Edwards SL, Charlie NK, Milfort MC et al (2008) A novel molecular solution for ultraviolet light detection in Caenorhabditis elegans. PLoS Biol. doi: 10.1371/journal.pbio.0060198 Google Scholar
  8. Faumont S, Rondeau G, Thiele TR et al (2011) An image-free opto-mechanical system for creating virtual environments and imaging neuronal activity in freely moving Caenorhabditis elegans. PLoS One 6:e24666. doi: 10.1371/journal.pone.0024666 PubMedCentralPubMedCrossRefGoogle Scholar
  9. Guo ZV, Hart AC, Ramanathan S (2009) Optical interrogation of neural circuits in Caenorhabditis elegans. Nat Methods 6:891–896PubMedCentralPubMedCrossRefGoogle Scholar
  10. Husson SJ, Gottschalk A, Leifer AM (2013) Optogenetic manipulation of neural activity in C. elegans: from synapse to circuits and behaviour. Biol Cell 105:235–250PubMedCrossRefGoogle Scholar
  11. Jarrell T a, Wang Y, Bloniarz AE et al (2012) The connectome of a decision-making neural network. Science 337:437–444PubMedCrossRefGoogle Scholar
  12. Kawazoe Y, Yawo H, Kimura KD (2012) A simple optogenetic system for behavioral analysis of freely moving small animals. Neurosci Res 75:65–68PubMedCrossRefGoogle Scholar
  13. Kocabas A, Shen C-H, Guo ZV et al (2012) Controlling interneuron activity in Caenorhabditis elegans to evoke chemotactic behaviour. Nature 490:273–277PubMedCentralPubMedCrossRefGoogle Scholar
  14. Kuhara A, Ohnishi N, Shimowada T et al (2011) Neural coding in a single sensory neuron controlling opposite seeking behaviours in Caenorhabditis elegans. Nat Commun 2:355. doi: 10.1038/ncomms1352 PubMedCentralPubMedCrossRefGoogle Scholar
  15. Leifer AM, Fang-Yen C, Gershow M et al (2011) Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans. Nat Methods 8:147–152PubMedCentralPubMedCrossRefGoogle Scholar
  16. Lindsay TH, Thiele TR, Lockery SR (2011) Optogenetic analysis of synaptic transmission in the central nervous system of the nematode Caenorhabditis elegans. Nat Commun 2:306. doi: 10.1038/ncomms1304 PubMedCentralPubMedCrossRefGoogle Scholar
  17. Miyawaki A, Llopis J, Heim R et al (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–887PubMedCrossRefGoogle Scholar
  18. Mori I, Ohshima Y (1995) Neural regulation of thermotaxis in Caenorhabditis elegans. Nature 376:344–348PubMedCrossRefGoogle Scholar
  19. Nagel G, Brauner M, Liewald JF et al (2005) Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr Biol 15:2279–2284PubMedCrossRefGoogle Scholar
  20. Nakai J, Ohkura M, Imoto K (2001) A high signal-to-noise Ca(2+) probe composed of a single green fluorescent protein. Nat Biotechnol 19:137–141PubMedCrossRefGoogle Scholar
  21. Narayan A, Laurent G, Sternberg PW (2011) Transfer characteristics of a thermosensory synapse in Caenorhabditis elegans. Proc Natl Acad Sci U S A 108:9667–9672. doi: 10.1073/pnas.1106617108 PubMedCentralPubMedCrossRefGoogle Scholar
  22. Piggott BJ, Liu J, Feng Z et al (2011) The neural circuits and synaptic mechanisms underlying motor initiation in C. elegans. Cell 147:922–933PubMedCentralPubMedCrossRefGoogle Scholar
  23. Stirman JN, Crane MM, Husson SJ et al (2011) Real-time multimodal optical control of neurons and muscles in freely behaving Caenorhabditis elegans. Nat Methods 8:153–158PubMedCentralPubMedCrossRefGoogle Scholar
  24. White JG, Southgate E, Thomson JN et al (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 314:1–340PubMedCrossRefGoogle Scholar
  25. Yizhar O, Fenno LE, Davidson TJ et al (2011) Primer optogenetics in neural systems. Neuron 71:9–34PubMedCrossRefGoogle Scholar
  26. Zhang F, Wang L-P, Brauner M et al (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446:633–639PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  1. 1.Group of Molecular Neurobiology, Division of Biological Science, Graduate School of ScienceNagoya UniversityNagoyaJapan

Personalised recommendations