Skip to main content
Book cover

Optogenetics pp 199–212Cite as

Optogenetics in Drosophila

  • Chapter

Abstract

The fruit fly Drosophila melanogaster, an insect 5 mm long, has served as the experimental subject in a wide range of biological research, including neuroscience. In this chapter, we briefly introduce optogenetic applications in Drosophila neuroscience research. First, we describe the development of Drosophila, from egg to adult. In fly neuroscience, temperature-controlled perturbation of neural activity, sometimes called ‘thermogenetics’ has been an invaluable tool that pre-dates the advent of optogenetics. After briefly introducing this perturbation technique, we describe the process of generating transgenic flies that express optogenetic probes in a specific group of cells. Transgenic techniques are crucial in the application of optogenetics in Drosophila neuroscience; here we introduce the transposon P elements and ϕC31 integrase methods. As for cell-specific gene expression techniques, the binary expression systems utilizing Gal4-UAS and LexA-LexAop are described. We also present a short and basic optogenetic experiment with Drosophila larvae as a practical example. Finally, we review a few recent (as of 2014) studies in Drosophila neuroscience that made use of optogenetics. In this overview of fly development, transgenic methods, and applications of optogenetics, we present an introductory background to optogenetics in Drosophila.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aberle H, Haghighi AP, Fetter RD et al (2002) Wishful thinking encodes a BMP type II receptor that regulates synaptic growth in Drosophila. Neuron 33(4):545–558

    Article  CAS  PubMed  Google Scholar 

  • Ataman B, Ashley J, Gorczyca M et al (2008) Rapid activity-dependent modifications in synaptic structure and function require bidirectional Wnt signaling. Neuron 57(5):705–718

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bellen HJ, Tong C, Tsuda H (2010) 100 years of Drosophila research and its impact on vertebrate neuroscience: a history lesson for the future. Nat Rev Neurosci 11(7):514–522

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bellen HJ, Levis RW, He Y et al (2011) The Drosophila gene disruption project: progress using transposons with distinctive site specificities. Genetics 188(3):731–743

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118(2):401–415

    CAS  PubMed  Google Scholar 

  • Chen MS, Obar RA, Schroeder CC et al (1991) Multiple forms of dynamin are encoded by shibire, a Drosophila gene involved in endocytosis. Nature 351(6327):583–586

    Article  CAS  PubMed  Google Scholar 

  • de Vries SE, Clandinin TR (2012) Loom-sensitive neurons link computation to action in the Drosophila visual system. Curr Biol 22(5):353–362

    Article  PubMed Central  PubMed  Google Scholar 

  • Gordon MD, Scott K (2009) Motor control in a Drosophila taste circuit. Neuron 61(3):373–384

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grigliatti TA, Hall L, Rosenbluth R et al (1973) Temperature-sensitive mutations in Drosophila melanogaster. XIV. A selection of immobile adults. Mol Gen Genet 120(2):107–114

    Article  CAS  PubMed  Google Scholar 

  • Groth AC, Fish M, Nusse R et al (2004) Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics 166(4):1775–1782

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hamada FN, Rosenzweig M, Kang K et al (2008) An internal thermal sensor controlling temperature preference in Drosophila. Nature 454(7201):217–220

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Honjo K, Hwang RY, Tracey WD Jr (2012) Optogenetic manipulation of neural circuits and behavior in Drosophila larvae. Nat Protoc 7(8):1470–1478

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hwang RY, Zhong L, Xu Y et al (2007) Nociceptive neurons protect Drosophila larvae from parasitoid wasps. Curr Biol 17(24):2105–2116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Inada K, Kohsaka H, Takasu E et al (2011) Optical dissection of neural circuits responsible for Drosophila larval locomotion with halorhodopsin. PLoS One 6(12):e29019. doi:10.1371/journal.pone.0029019

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Inagaki HK, Ben-Tabou de Leon S, Wong AM et al (2012) Visualizing neuromodulation in vivo: TANGO-mapping of dopamine signaling reveals appetite control of sugar sensing. Cell 148(3):583–595

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Inagaki HK, Jung Y, Hoopfer ED et al (2014) Optogenetic control of Drosophila using a red-shifted channelrhodopsin reveals experience-dependent influences on courtship. Nat Methods 11(3):325–332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kitamoto T (2001) Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. J Neurobiol 47(2):81–92

    Article  CAS  PubMed  Google Scholar 

  • Klapoetke NC, Murata Y, Kim SS et al (2014) Independent optical excitation of distinct neural populations. Nat Methods 11(3):338–346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kohsaka H, Okusawa S, Itakura Y et al (2012) Development of larval motor circuits in Drosophila. Dev Growth Differ 54(3):408–419

    Article  CAS  PubMed  Google Scholar 

  • Kosaka T, Ikeda K (1983) Possible temperature-dependent blockage of synaptic vesicle recycling induced by a single gene mutation in Drosophila. J Neurobiol 14(3):207–225

    Article  CAS  PubMed  Google Scholar 

  • Lai SL, Lee T (2006) Genetic mosaic with dual binary transcriptional systems in Drosophila. Nat Neurosci 9(5):703–709

    Article  CAS  PubMed  Google Scholar 

  • Levis R, Hazelrigg T, Rubin GM (1985) Effects of genomic position on the expression of transduced copies of the white gene of Drosophila. Science 229(4713):558–561

    Article  CAS  PubMed  Google Scholar 

  • Lima SQ, Miesenbock G (2005) Remote control of behavior through genetically targeted photostimulation of neurons. Cell 121(1):141–152

    Article  CAS  PubMed  Google Scholar 

  • Lin JY, Knutsen PM, Muller A et al (2013) ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat Neurosci 16(10):1499–1508

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ljaschenko D, Ehmann N, Kittel RJ (2013) Hebbian plasticity guides maturation of glutamate receptor fields in vivo. Cell Rep 3(5):1407–1413. doi:10.1016/j.celrep.2013.04.003

    Article  CAS  PubMed  Google Scholar 

  • Markstein M, Pitsouli C, Villalta C et al (2008) Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes. Nat Genet 40(4):476–483

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matsunaga T, Fushiki A, Nose A et al (2013) Optogenetic perturbation of neural activity with laser illumination in semi-intact Drosophila larvae in motion. J Vis Exp 77:e50513. doi:10.3791/50513

    PubMed  Google Scholar 

  • McKemy DD, Neuhausser WM, Julius D (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416(6876):52–58

    Article  CAS  PubMed  Google Scholar 

  • Peabody NC, Pohl JB, Diao F et al (2009) Characterization of the decision network for wing expansion in Drosophila using targeted expression of the TRPM8 channel. J Neurosci 29(11):3343–3353

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pfeiffer BD, Jenett A, Hammonds AS et al (2008) Tools for neuroanatomy and neurogenetics in Drosophila. Proc Natl Acad Sci U S A 105(28):9715–9720

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pfeiffer BD, Ngo TT, Hibbard KL et al (2010) Refinement of tools for targeted gene expression in Drosophila. Genetics 186(2):735–755

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pulver SR, Pashkovski SL, Hornstein NJ et al (2009) Temporal dynamics of neuronal activation by Channelrhodopsin-2 and TRPA1 determine behavioral output in Drosophila larvae. J Neurophysiol 101(6):3075–3088

    Article  PubMed Central  PubMed  Google Scholar 

  • Rubin GM, Spradling AC (1982) Genetic transformation of Drosophila with transposable element vectors. Science 218(4570):348–353

    Article  CAS  PubMed  Google Scholar 

  • Schroll C, Riemensperger T, Bucher D et al (2006) Light-induced activation of distinct modulatory neurons triggers appetitive or aversive learning in Drosophila larvae. Curr Biol 16(17):1741–1747

    Article  CAS  PubMed  Google Scholar 

  • Shearin HK, Dvarishkis AR, Kozeluh CD et al (2013) Expansion of the gateway multisite recombination cloning toolkit. PLoS One 8(10):e77724. doi:10.1371/journal.pone.0077724

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Suh GS, Ben-Tabou de Leon S, Tanimoto H et al (2007) Light activation of an innate olfactory avoidance response in Drosophila. Curr Biol 17(10):905–908

    Article  CAS  PubMed  Google Scholar 

  • Thum AS, Knapek S, Rister J et al (2006) Differential potencies of effector genes in adult Drosophila. J Comp Neurol 498(2):194–203

    Article  CAS  PubMed  Google Scholar 

  • van der Bliek AM, Meyerowitz EM (1991) Dynamin-like protein encoded by the Drosophila shibire gene associated with vesicular traffic. Nature 351(6325):411–414

    Article  PubMed  Google Scholar 

  • Venken KJ, Simpson JH, Bellen HJ (2011) Genetic manipulation of genes and cells in the nervous system of the fruit fly. Neuron 72(2):202–230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xiang Y, Yuan Q, Vogt N et al (2010) Light-avoidance-mediating photoreceptors tile the Drosophila larval body wall. Nature 468(7326):921–926

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang W, Ge W, Wang Z (2007) A toolbox for light control of Drosophila behaviors through channelrhodopsin 2-mediated photoactivation of targeted neurons. Eur J Neurosci 26(9):2405–2416

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

We thank Mrs. Kasumi Shibahara for help with preparing figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Kohsaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Kohsaka, H., Nose, A. (2015). Optogenetics in Drosophila . In: Yawo, H., Kandori, H., Koizumi, A. (eds) Optogenetics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55516-2_13

Download citation

Publish with us

Policies and ethics