Skip to main content
Book cover

Starch pp 239–290Cite as

Starch Degradation

  • Chapter

Abstract

Degradation of starch (and of glycogen as well) converts carbohydrates accumulated as metabolically inert storage products back into forms that are usable for various biosynthetic and catabolic routes. Starch and glycogen share their basic biochemistry, but distinct physicochemical and enzymatic differences exist. Structural (dis)similarities of hydroinsoluble starch and hydrosoluble glycogen are briefly discussed. Various types of starch-degrading enzymes and their mode of action are presented. Features frequently observed in starch-degrading enzymes, such as carbohydrate-binding modules and secondary binding sites, are discussed including kinetic implications. Approaches to identify proteins functional in vivo starch degradation and their limitations are discussed. Three types of in vivo starch degradation are distinguished: degradation of transitory starch, mobilization of reserve starch in dead tissue, and that in living cells. Most of the current biochemical knowledge of starch degradation relates to mobilisation of transitory starch. We discuss this process in the context of cellular organisation and location/distribution of starch granules within the cell. Transitory starch degradation is initiated at the granule surface and includes local transitions from a hydroinsoluble ordered to a soluble state. Transition is facilitated by iterating cycles of phosphorylating and dephosphorylating reactions that act on starch-related glucosyl residues. In the stroma, four main products are synthesised by highly interconnected paths and are then exported into the cytosol. Plastidial transporters and cytosolic downstream processes are presented which link starch degradation to biosynthetic or degradative routes all originating from the cytosol. Finally, current views on plastidial transitory starch degradation as controlled by the cytosol are discussed.

Keywords

  • Amylose
  • Amylopectin
  • Glycogen
  • Carbohydrate-active enzymes
  • Carbohydrate-binding module (CBM)
  • Reserve starch
  • Secondary binding site (SBS)
  • Starch degradation
  • Starch modification
  • Transitory starch

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-4-431-55495-0_7
  • Chapter length: 52 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-4-431-55495-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 7.1
Fig. 7.2
Fig. 7.3
Fig. 7.4
Fig. 7.5

References

  • Aguado C, Sarkar S, Korolchuk VI et al (2010) Laforin, the most common protein mutated in Lafora disease, regulates autophagy. Hum Mol Genet 19:2867–2876

    CAS  PubMed  PubMed Central  Google Scholar 

  • Albrecht T, Koch A, Lode A et al (2001) Plastidic (Pho1-type) phosphorylase isoforms in potato (Solanum tuberosum L.) plants: expression analysis and immunochemical characterization. Planta 213:602–613

    CAS  PubMed  Google Scholar 

  • Asatsuma S, Sawada C, Itoh K et al (2005) Involvement of α-amylase I-1 in starch degradation in rice chloroplasts. Plant Cell Physiol 46:858–869

    CAS  PubMed  Google Scholar 

  • Atmodjo MA, Hao Z, Mohnen D (2013) Evolving views of pectin biosynthesis. Annu Rev Plant Biol 64:747–779

    CAS  PubMed  Google Scholar 

  • Baginsky S (2009) Plant proteomics: concepts, applications, and novel strategies for data interpretation. Mass Spectrom Rev 28:93–120

    CAS  PubMed  Google Scholar 

  • Bailey JM, Whelan WJ (1961) Physical properties of starch I. Relationship between iodine stain and chain length. J Biol Chem 236:969–972

    CAS  PubMed  Google Scholar 

  • Ball S (2012) Evolution of the starch pathway. In: Tetlow IA (ed) Starch: origins, structure and metabolism, vol 5, Essential reviews in experimental biology. Society for Experimental Biology, London, pp 29–54

    Google Scholar 

  • Ball S, Morell MK (2003) From bacterial glycogen to starch: understanding the biogenesis of the starch granule. Annu Rev Plant Biol 54:207–233

    CAS  PubMed  Google Scholar 

  • Ball S, Colleoni C, Cenci U et al (2011) The evolution of glycogen and starch metabolism gives molecular clues to understand the establishment of plastid endosymbiosis. J Exp Bot 62:1775–1801

    CAS  PubMed  Google Scholar 

  • Bertoft E (2013) On the building block and backbone concepts of amylopectin structure. Cereal Chem 90:294–311

    CAS  Google Scholar 

  • Bewley DJ (1997) Seed germination and dormancy. Plant Cell 9:1055–1066

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bischof S, Umhang M, Eicke S et al (2013) Cecropia peltata accumulates starch or soluble glycogen by differentially regulation starch biosynthetic genes. Plant Cell 25:1400–1415

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blazek J, Copeland L (2010) Amylolysis of wheat starches. II. Degradation patterns of native starch granules with varying functional properties. J Cereal Sci 52:295–302

    CAS  Google Scholar 

  • Boraston AB, Bolam DN, Gilbert HJ et al (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382:769–781

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buléon A, Colonna P, Planchot V et al (1998) Starch granules: structure and biosynthesis. Intern J Biolo Macromol 23:85–112

    Google Scholar 

  • Buléon A, Cotte M, Putaux J-L et al (2014) Tracking sulfur and phosphorus within single starch granules using synchrotron X-ray microfluorescence mapping. Biochim Biophys Acta 1840:113–119

    PubMed  Google Scholar 

  • Bustos R, Fahy B, Hylton CM et al (2004) Starch granule initiation is controlled by hetero-multimeric isoamylase in potato tubers. Proc Natl Acad Sci U S A 101:2215–2220

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C et al (2009) The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carillo P, Feil R, Gibon Y et al (2013) A fluorometric assay for trehalose in the picomole range. Plant Methods 9:21

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cenci U, Nitschke F, Steup M et al (2014) Transition from glycogen to starch metabolism in archaeplastida. Trends Plant Sci 19:18–28

    CAS  PubMed  Google Scholar 

  • Chen K, An Y-QC (2006) Transcriptional responses to gibberellin and abscisic acid in barley aleurone. J Integr Plant Biol 48:591–612

    CAS  Google Scholar 

  • Chia T, Thorneycroft D, Chapple A et al (2004) A cytosolic glucosyl transferase is required for conversion of starch to sucrose in Arabidopsis leaves at night. Plant J 37:853–863

    CAS  PubMed  Google Scholar 

  • Chikwana VM, Khanna M, Baskaran S et al (2013) Structural basis for 2′-phosphate incorporation into glycogen by glycogen synthase. Proc Natl Acad Sci U S A 110:20976–20981

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cho M-H, Lim H, Shin DH et al (2011) Role of the plastidic glucose transporter in the export of starch degradation products from the chloroplasts in Arabidopsis thaliana. New Phytol 190:101–112

    CAS  PubMed  Google Scholar 

  • Christiansen C, Hachem NA, Glaring MA et al (2009) A CBM20 low-affinity starch-binding domains from glucan, water dikinase. FEBS Lett 583:1159–1163

    CAS  PubMed  Google Scholar 

  • Claessen É, Rivoal J (2007) Isoenzymes of plant hexokinase: occurrence, properties and functions. Phytochemistry 68:709–713

    Google Scholar 

  • Claeys H, De Bodt S, Inzé D (2014) Gibberellins and DELLAs: central nodes in growth regulatory networks. Trends Plant Sci 19:231–239

    CAS  PubMed  Google Scholar 

  • Collén J, Porcel B, Carré W et al (2013) Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida. Proc Natl Acad Sci U S A 110:5247–5252

    PubMed  PubMed Central  Google Scholar 

  • Comparat-Moss S, Kötting O, Stettler M et al (2010) A putative phosphatase, LSF1, is required for normal starch turnover in Arabidopsis leaves. Plant Physiol 152:685–697

    Google Scholar 

  • Crumpton-Taylor M, Grandison S, Png KMY et al (2012) Control of starch granule number in Arabidopsis chloroplasts. Plant Physiol 158:905–916

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crumpton-Taylor M, Pike M, Lu K-J et al (2013) Starch synthase 4 is essential for coordination of starch granule formation with chloroplast division during Arabidopsis leaf expansion. New Phytol 200:1064–1074

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cuyvers S, Dornez E, Delcour JA et al (2012) Occurrence and functional significance of secondary carbohydrate binding sites in glycoside hydrolases. Crit Rev Biotechnol 32:93–107

    CAS  PubMed  Google Scholar 

  • Daussant J, Zbaszyniak B, Sadowski J et al (1981) Cereal β-amylase: immunochemical study on two enzyme-deficient inbred lines of rye. Planta 151:176–179

    CAS  PubMed  Google Scholar 

  • De Schepper V, De Swaef T, Bauweraerts I et al (2013) Phloem transport: a review of mechanisms and controls. J Exp Bot 64:4839–4850

    PubMed  Google Scholar 

  • Delatte T, Trevisan M, Parker M et al (2005) Arabidopsis mutants Atisa1 and Atisa2 have identical phenotypes and lack the same multimeric isoamylase, which influences the branch point distribution of amylopectin during starch synthesis. Plant J 41:815–830

    CAS  PubMed  Google Scholar 

  • Delatte T, Umhang M, Trevisan M et al (2006) Evidence for distinct mechanisms of starch granule breakdown. J Biol Chem 281:12050–12059

    CAS  PubMed  Google Scholar 

  • Denison FC, Paul A-L, Zupanska AK et al (2011) 14-3-3 proteins in plant physiology. Semin Cell Dev Biol 22:720–727

    CAS  PubMed  Google Scholar 

  • DePaoli A, Contreras CJ, Segvich DM et al (2015) Glycogen phosphomonoester distribution in mouse models of the progressive myoclonic epilepsy, Lafora disease. J Biol Chem 290:841–850

    Google Scholar 

  • Deschamps P, Colleoni C, Nakamura Y et al (2008) Metabolic symbiosis and the birth of the plant kingdom. Mol Biol Evol 25:536–548

    CAS  PubMed  Google Scholar 

  • Dippel R, Boos W (2005) The maltodextrin system of Escherichia coli. Metabolism and transport. J Bacteriol 187:8322–8331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dumez S, Wattebled F, Dauvillee D et al (2006) Mutants of Arabidopsis lacking starch branching enzyme II substitute plastidial starch synthesis by cytoplasmic maltose accumulation. Plant Cell 18:2694–2709

    CAS  PubMed  PubMed Central  Google Scholar 

  • Edner C, Li J, Albrecht T, Mahlow S et al (2007) Glucan, water dikinase activity stimulates breakdown of starch granules by plastidial β-amylases. Plant Physiol 145:17–28

    CAS  PubMed  PubMed Central  Google Scholar 

  • Emes MJ, Tetlow IJ (2012) The role of heteromeric protein complexes in starch synthesis. In: Tetlow IJ (ed) Starch: origins, structure and metabolism, Essential reviews in experimental biology. Society for Experimental Biology, London, pp 255–278

    Google Scholar 

  • Eveland AL, Jackson DP (2012) Sugars, signalling, and plant development. J Exp Bot 63:3367–3377

    CAS  PubMed  Google Scholar 

  • Facchinelli F, Colleoni C, Ball SG et al (2013) Chlamydia, cyanobion, or host: who was on top in the ménage à trios? Trends Plant Sci 18:673–679

    CAS  PubMed  Google Scholar 

  • Facon M, Lin Q, Azzaz AM et al (2013) Distinct functional properties if isoamylase-type starch debranching enzymes in monocot and dicot leaves. Plant Physiol 163:1363–1375

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fazedas E, Szabó K, Kandra L et al (2013) Unexpected mode of action of sweet potato β-amylase on maltooligomers. Biochim Biophys Acta 1834:1976–1981

    Google Scholar 

  • Fettke J, Eckermann N, Poeste S et al (2004) The glycan substrate of the cytosolic (pho2) phosphorylase isozyme from Pisum sativum L.: identification, linkage analysis and subcellular localization. Plant J 39:933–946

    CAS  PubMed  Google Scholar 

  • Fettke J, Eckermann N, Tiessen A et al (2005a) Identification, subcellular localization and biochemical characterization of water-soluble heteroglycans (SHG) in leaves of Arabidopsis thaliana L.: distinct SHG reside in the cytosol and in the apoplast. Plant J 43:568–586

    CAS  PubMed  Google Scholar 

  • Fettke J, Poeste S, Eckermann N et al (2005b) Analysis of cytosolic heteroglycans from leaves of transgenic potato (Solanum tuberosum L.) plants that under- or over-express the Pho2 phosphorylase isozyme. Plant Cell Physiol 46:1987–2004

    CAS  PubMed  Google Scholar 

  • Fettke J, Chia T, Eckermann N et al (2006) A transglucosidase necessary for starch degradation and maltose metabolism in leaves at night acts on cytosolic heteroglycans (SHG). Plant J 46:668–684

    CAS  PubMed  Google Scholar 

  • Fettke J, Nunes-Nesi A, Alpers J et al (2008) Alterations in cytosolic glucose-phosphate metabolism affect structural features and biochemical properties of starch-related heteroglycans. Plant Physiol 148:1614–1629

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fettke J, Hejazi M, Smirnova J et al (2009) Eukaryotic starch degradation: integration of plastidial and cytosolic pathways. J Exp Bot 60:2907–2922

    CAS  PubMed  Google Scholar 

  • Fettke J, Albrecht T, Hejazi M et al (2010) Glucose 1-phosphate is efficiently taken up by potato (Solanum tuberosum) tuber parenchyma cells and converted to reserve starch granules. New Phytol 185:663–675

    CAS  PubMed  Google Scholar 

  • Fettke J, Malinova I, Albrecht T et al (2011) Glucose 1-phosphate transport into protoplasts and chloroplasts from leaves of Arabidopsis. Plant Physiol 155:1723–1734

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fettke J, Fernie AR, Steup M (2012a) Transitory starch and its degradation in higher plants. In: Tetlow IJ (ed) Starch: origins, structure and metabolism, vol 5, Essential reviews in experimental biology. Society for Experimental Biology, London, pp 311–374

    Google Scholar 

  • Fettke J, Leifels L, Brust H et al (2012b) Two carbon fluxes to reserve starch in potato (Solanum tuberosum L.) tuber cells are closely interconnected but differently modulated by temperature. J Exp Bot 63:3011–3029

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fontes CMGA, Gilbert HJ (2010) Cellulosomes: highly efficient nanomachines designated to deconstruct plant cell wall complex carbohydrates. Annu Rev Biochem 79:655–681

    CAS  PubMed  Google Scholar 

  • Fordham-Skelton AP, Chilley P, Lumbreras V et al (2002) A novel higher plant protein tyrosine phosphatase interacts with SNF1-related protein kinases via a KIS (kinase interaction sequence) domain. Plant J 29:705–715

    CAS  PubMed  Google Scholar 

  • Fu F-F, Xue H-W (2010) Coexpression analyses identifies rice starch regulator1, a rice AP2/EREBP family transcription factor, as a novel rice starch biosynthesis regulator. Plant Physiol 154:927–938

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita N, Nakamura Y (2012) Distinct and overlapping functions of starch synthase isoforms. In: Tetlow IA (ed) Starch: origin, structure and metabolism, vol 5, Essential reviews in experimental biology. Society for Experimental Biology, London, pp 115–140

    Google Scholar 

  • Fujita N, Kubo A, Suh DS et al (2003) Antisense inhibition of isoamylase alters the structure of amylopectin and physicochemical properties of starch in rice endosperm. Plant Cell Physiol 44:607–618

    CAS  PubMed  Google Scholar 

  • Fujita N, Toyosawa Y, Yoshinori U et al (2009) Characterization of pullulanase (PUL)-deficient mutants of rice (Oryza sativa L.) and the function of PUL on starch biosynthesis in the developing rice endosperm. J Exp Bot 60:1009–1023

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fulton DC, Stettler M, Mettler T et al (2008) Beta-AMYLASE4, a noncatalytic protein required for starch breakdown, acts upstream of the active beta-amylases in Arabidopsis chloroplasts. Plant Cell 20:1040–1058

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garz A, Sandmann M, Rading M et al (2012) Cell-to-cell diversity in a synchronized Chlamydomonas culture as revealed by single cell analyses. Biophys J 103:1078–1086

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gayarre J, Duran-Trío L, Garcia OC et al (2014) The phosphatase activity of laforin is dispensable to rescue EPM2a−/− mice from Lafora disease. Brain 137:806–818

    PubMed  Google Scholar 

  • Gentry MS, Dowen RH III, Worby CA et al (2007) The phosphatase laforin crosses evolutionary boundaries and links carbohydrate metabolism to neutral disease. J Cell Biol 178:477–488

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gentry MS, Dixon JE, Worby CA (2009) Lafora disease: insights into neurodegeneration from plant metabolism. Trends Biochem Sci 34:628–639

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gentry MS, Pace RM (2009) Conservation of the glucan phosphatase laforin is linked to rates of molecular evolution and the glucan metabolism of the organism. BMC Evol Biol 9:138

    PubMed  PubMed Central  Google Scholar 

  • Gentry MS, Romá-Mateo C, Sanz P (2013) Laforin, a protein with many faces: glucan phosphatase, adapter protein, et alii. FEBS J 280:525–537

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert HJ (2010) The biochemistry and structural biology of plant cell wall deconstruction. Plant Physiol 153:444–455

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glaubitz U, Li X, Köhl K et al (2014) Differential physiological responses of different rice (Oryza sativa) cultivars to elevated night temperature during vegetative growth. Funct Plant Biol 41:437–448

    CAS  Google Scholar 

  • Goldberg RN, Bell D, Tewari YB et al (1991) Thermodynamics of hydrolysis of oligosaccharides. Biophys Chem 40:69–76

    CAS  PubMed  Google Scholar 

  • Graf A, Smith AM (2011) Starch and the clock: the dark side of the plant productivity. Trends Plant Sci 16:169–175

    CAS  PubMed  Google Scholar 

  • Graf A, Schlereth A, Stitt M et al (2010) Circadian control of carbohydrate availability for growth in Arabidopsis plants at night. Proc Natl Acad Sci U S A 107:9458–9463

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guillén D, Sánchez S, Rodríguez-Sanoja R (2010) Carbohydrate-binding domains: multiplicity of biological roles. Appl Microbiol Biotechnol 85:1241–1249

    PubMed  Google Scholar 

  • Häusler RE, Heinrichs L, Schmitz J et al (2014) How sugars might coordinate chloroplast and nuclear gene expression during acclimation to high light intensities. Mol Plant 7:1121–1137

    PubMed  Google Scholar 

  • Heazlewood JL, Durek P, Hummel J et al (2009) PhosPhAt: a database of phosphorylation sites in Arabidopsis thaliana and a plant-specific phosphorylation site predictor. Nucleic Acid Res 36:D1015–D1021

    Google Scholar 

  • Hehre EJ, Brewer CF, Henghof DS (1979) Scope and mechanism of carbohydrase action. Hydrolytic and nonhydrolytic actions of beta-amylase on alpha- and beta-maltosyl fluoride. J Biol Chem 254:5942–5950

    CAS  PubMed  Google Scholar 

  • Hehre EJ, Kitabata S, Brewer CF (1986) Catalytic flexibility of glycosidases. The hydration of maltal by β-amylase to form 2-deoxymaltose. J Biol Chem 261:2147–2153

    CAS  PubMed  Google Scholar 

  • Hejazi M, Fettke J, Haebel S et al (2008) Glucan, water dikinase phosphorylates crystalline maltodextrins and thereby initiates solubilisation. Plant J 55:323–334

    CAS  PubMed  Google Scholar 

  • Hejazi M, Fettke J, Paris O et al (2009) The two plastidial starch-related dikinases sequentially phosphorylate glucosyl residues at the surface of both the A- and the B-type allomorphs of crystalline maltodextrins but the mode of action differs. Plant Physiol 150:962–976

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hejazi M, Fettke J, Kötting O et al (2010) The laforin-like dual-specificity phosphatase SEX4 from Arabidopsis hydrolyses both C6- and C3-monophosphate esters introduced by starch-related dikinases and thereby affects phase transition of alpha-glucans. Plant Physiol 152:711–722

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hejazi M, Fettke J, Steup M (2012) Starch phosphorylation and dephosphorylation: the consecutive action of starch-related dikinases and phosphatases. In: Tetlow IA (ed) Starch: origins, structure and metabolism, vol 5, Essential reviews in experimental biology. Society for Experimental Biology, London, pp 279–309

    Google Scholar 

  • Henry C, Bledsoe SW, Siekman A et al (2014) The trehalose pathway in maize: conservation and gene regulation in response to the diurnal cycle and extended darkness. J Exp Bot 65:5959–5973

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hong YF, Ho T-HD, Wu CF et al (2012) Convergent starvation signals and hormone crosstalk in regulating nutrient mobilization upon germination in cereals. Plant Cell 24:2857–2873

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X-F, Nazarin-Fironzabadi F, Vincken J-P et al (2014) Expression of an amylosucrase in potato results in larger starch granules with novel properties. Planta 240:409–421

    CAS  PubMed  Google Scholar 

  • Hussain H, Mant A, Seale R et al (2003) Three isoforms of isoamylase contribute different catalytic properties for the debranching of potato glucans. Plant Cell 15:133–149

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang SK, Nishi A, Satoh H et al (2010) Rice endosperm-specific plastidial alpha-phosphorylase is important for synthesis opf short-chain malto-oligosaccharides. Arch Biochem Biophys 495:82–92

    CAS  PubMed  Google Scholar 

  • Ingkasuwan P, Netrphan S, Prasitwattanaseree S et al (2012) Inferring transcriptional gene regulation network of starch metabolism in Arabidopsis thaliana leaves using graphical Gaussian model. MBC Syst Biol 6:100

    CAS  Google Scholar 

  • Ishikawa K, Nakatani H, Katsuya Y et al (2007) Kinetic and structural analysis of enzyme sliding on a substrate: multiple attack in β-amylase. Biochemistry 46:792–798

    CAS  PubMed  Google Scholar 

  • Isshiki M, Matsuda Y, Takasaki A et al (2008) Du3, a mRNA cap-binding protein gene, regulates amylose content in Japonica rice seeds. Plant Biotechnol 25:483–487

    CAS  Google Scholar 

  • Izumi M, Hidema J, Makino A et al (2013) Autophagy contributes to nighttime energy availability for growth in Arabidopsis. Plant Physiol 161:1682–1693

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jane JL, Kasemsuwaran T, Leas S et al (1994) Anthology of starch granule morphology by scanning electron microscopy. Starch-Starke 46:121–129

    CAS  Google Scholar 

  • Kainuma K, French D (1970) Action of pancreatic alpha-amylase and sweet potato beta-amylase on 62 and 62 α-glucosylmaltooligosaccharides. FEBS Lett 6:182–186

    CAS  PubMed  Google Scholar 

  • Kammerer B, Fischer K, Hilpert B et al (1998) Molecular characterization of a carbon transporter in plastids from heterotrophic tissues: the glucose 6-phosphate/phosphate antiporter. Plant Cell 10:105–117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kartal Ö, Mahlow S, Skupin A et al (2011) Carbohydrate-active enzymes exemplify entropic principles in metabolism. Mol Syst Biol 7:542

    PubMed  PubMed Central  Google Scholar 

  • Keeling PL, Myers AM (2010) Biochemistry and genetics of starch synthesis. Annu Rev Food Sci 1:271–303

    CAS  Google Scholar 

  • Kerk D, Conley TR, Rodriguez FA et al (2006) A chloroplast-localized dual-specificity protein phosphatase in Arabidopsis contains a phylogenetically dispersed and ancient carbohydrate-binding module, which binds the polysaccharide starch. Plant J 46:400–413

    CAS  PubMed  Google Scholar 

  • Kiessling LL, Young T, Gruber TD et al (2008) Multivalency in protein-carbohydrate recognition. In: Fraser-Reid B, Tatsuata K, Thiem J (eds) Glycoscience. Springer, Berlin/Heidelberg, pp 2483–2523

    Google Scholar 

  • Kihara M, Kaneko T, Ito K et al (1999) Geographic variation of β-amylase thermostability among varieties of barley (Hordeum vulgare) and β-amylase deficiency. Plant Breed 118:453–455

    CAS  Google Scholar 

  • Kim T-J, Kim M-J, Kim B-C et al (1999) Modes of action of acarbose hydrolysis and transglycosylation catalyzed by a thermo-stable maltogenic amylase, the gene for which was cloned from a Thermus strain. Appl Environ Microbiol 65:1644–1651

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kötting O, Santelia D, Edner C et al (2009) STARCH-EXCESS4 is a laforin-like phosphoglucan phosphatase required for starch degradation in Arabidopsis thaliana. Plant Cell 21:334–346

    PubMed  PubMed Central  Google Scholar 

  • Kötting O, Kossmann J, Zeeman SC et al (2010) Regulation of starch metabolism: the age of enlightenment? Curr Opin Plant Biol 13:321–329

    PubMed  Google Scholar 

  • Kramhøft B, Bak-Jensen KS, Mori H et al (2005) Multiple attack, kinetic parameters, and product profiles in amylose hydrolysis by barley α-amylase 1 variants. Biochemistry 44:1824–1832

    PubMed  Google Scholar 

  • Kreis M, Williamson M, Buxton B et al (1987) Primary structure and differential expression of β-amylase in normal and mutant barley. Eur J Biochem 169:517–525

    CAS  PubMed  Google Scholar 

  • Kubo A, Rahman S, Utsumi Y et al (2005) Complementation of sugary-1 phenotype in rice endosperm with the wheat isoamylase1 gene supports a direct role for isoamylase1 in amylopectin biosynthesis. Plant Physiol 137:43–56

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kubo A, Colleoni C, Dinges J et al (2010) Functions of heteromeric and homomeric isoamylase-type starch-debranching enzymes in developing maize endosperm. Plant Physiol 153:956–969

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lastdrager J, Hanson J, Smeekens S (2014) Sugar signals and the control of plant growth and development. J Exp Bot 65:799–807

    CAS  PubMed  Google Scholar 

  • Leivar P, Quail PH (2011) PIFs: pivotal components in a cellular signaling hub. Trends Plant Sci 2011:19–28

    Google Scholar 

  • Li J, Francisco P, Zhou W, Edner C et al (2009) Catalytically-inactive β-amylase BAM4 required for starch breakdown in Arabidopsis leaves is a starch-binding protein. Arch Biochem Biophys 489:92–98

    CAS  PubMed  Google Scholar 

  • Liu Y, Bassham DC (2012) Autophagy: pathways for self-eating in plant cells. Annu Rev Plant Biol 63:215–237

    CAS  PubMed  Google Scholar 

  • Lloyd JR, Kossmann J (2015) Transitory and storage starch metabolism: two sides do the same coin? Curr Opin Biotechnol 32:143–148

    CAS  PubMed  Google Scholar 

  • Lohmeyer-Vogel EM, Kerk D, Nimick M et al (2008) Arabidopsis At5g39790 encodes a chloroplast-localized carbohydrate-binding coiled-coil domain-containing putative scaffold protein. BCM Plant Biol 8:120

    Google Scholar 

  • López CA, de Vries AH, Marrink SJ (2012) Amylose folding under the influence of lipids. Carbohydr Res 364:1–7

    PubMed  Google Scholar 

  • Lu CA, Lin CC, Lee KW et al (2007) The SnRK1A protein kinase plays a key role in sugar signaling during germination and seedling growth of rice. Plant Cell 19:2484–2499

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luís AS, Venditto I, Temple MJ et al (2013) Understanding how noncatalytic carbohydrate binding modules can display specificity for xyloglucan. J Biol Chem 288:4799–4809

    PubMed  PubMed Central  Google Scholar 

  • Lunn JE (2007) Gene families and evolution of trehalose metabolism in plants. Funct Plant Biol 34:550–563

    CAS  Google Scholar 

  • Lunn JE, Delorge I, Figueroa CM et al (2014) Trehalose metabolism in plants. Plant J 79: 544–567

    CAS  PubMed  Google Scholar 

  • Ma J, Jiang Q-T, Wei L et al (2014) Conserved structure and varied expression reveal key roles of phosphoglucan phosphatase gene starch excess 4 in barley. Planta 240:1179–1190

    CAS  PubMed  Google Scholar 

  • Mahlow S, Hejazi M, Kuhnert F et al (2014) Phosphorylation of transitory starch by α-glucan, water dikinase during starch turnover affects the surface properties and morphology of starch granules. New Phytol 203:495–507

    CAS  PubMed  Google Scholar 

  • Malinova I, Steup M, Fettke J (2011) Starch related heteroglycans in roots from Arabidopsis thaliana. J Plant Physiol 168:1406–1414

    CAS  PubMed  Google Scholar 

  • Malinova I, Steup M, Fettke J (2013) Carbon transitions from either Calvin cycle or transitory starch to heteroglycans as revealed by 14C-labeling experiments using protoplasts from Arabidopsis. Physiol Plant 149:25–44

    CAS  PubMed  Google Scholar 

  • Malinova I, Mahlow S, Alseekh S et al (2014) Double knock-out mutants of Arabidopsis thaliana grown under normal conditions reveal that the plastidial phosphorylase isozyme (PHS1) participates in transitory starch metabolism. Plant Physiol 164:607–621

    Google Scholar 

  • Martins MCM, Hejazi M, Fettke J et al (2013) Feedback inhibition of starch degradation in Arabidopsis leaves mediated by trehalose 6-phosphate. Plant Physiol 163:1142–1163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsushima R, Maekawa M, Kurano M et al (2014) Amyloplast-localized SSG4 protein influences the size of starch grains in rice endosperm. Plant Physiol 164:623–636

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meekins DA, Guo H-F, Husodo S et al (2013) Structure of the Arabidopsis glucan phosphatase LIKE SEX FOUR2 reveals a unique mechanism for starch dephosphorylation. Plant Cell 25:2302–2314

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meekins DA, Raththagala M, Husodo S et al (2014) Phosphoglucan-bound structure of starch phosphatase starch excess4 reveals the mechanism for C6 specificity. Proc Natl Acad Sci U S A 111:7272–7277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meléndez-Hevia E, Waddell TG, Shelton ED (1993) Optimization of molecular design in the evolution of metabolism: the glycogen molecule. Biochem J 295:477–483

    PubMed  PubMed Central  Google Scholar 

  • Mikami B, Degano M, Hehre EJ et al (1994) Crystal structure of soybean β-amylase reacted with β-maltose and maltal: active site components and their apparent role in catalysis. Biochemistry 33:7779–7787

    CAS  PubMed  Google Scholar 

  • Minassian BA, Lee JR, Herbick JA et al (1998) Mutations in a gene encoding a novel protein tyrosine phosphatase cause progressive myoclonus epilepsy. Nat Genet 20:171–174

    CAS  PubMed  Google Scholar 

  • Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107–132

    CAS  PubMed  Google Scholar 

  • Moghaddam MRB, Van den Ende W (2012) Sugar and plant immunity. J Exp Bot 63:3989–3998

    Google Scholar 

  • Nielsen TH, Wischmann B, Enevoldsen K et al (1994) Starch phosphorylation in potato tubers proceeds concurrently with de novo biosynthesis of starch. Plant Physiol 105:111–117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen MM, Bozonnet S, Seo ES et al (2009) Two secondary carbohydrate binding sites on the surface of barley alpha-amylase I have distinct functions and display synergy in hydrolysis of starch granules. Biochemistry 48:7686–7697

    CAS  PubMed  Google Scholar 

  • Nielsen JW, Kramhøft B, Boyonnet S et al (2012) Degradation of the starch components amylopectin and amylose by barley α-amylase 1: role of surface binding site 2. Arch Biochem Biophys 528:1–6

    CAS  PubMed  Google Scholar 

  • Niittylä T, Messerli G, Trevisan M et al (2004) A previously unknown maltose transporter essential for starch degradation in leaves. Science 303:87–89

    PubMed  Google Scholar 

  • Niittylä T, Comparat-Moss S, Lue WL et al (2006) Similar protein phosphatases control starch metabolism in plants and glycogen metabolism in mammals. J Biol Chem 281:11815–11818

    PubMed  Google Scholar 

  • Nishimo H, Murakawa A, Mori T et al (2004) Kinetic studies of AMP-dependent phosphorolysis of amylopectin catalyzed by phosphorylase b on a 27 MHz microbalance quartz-crystal. J Am Chem Soc 126:14752–14757

    Google Scholar 

  • Nishiyama Y, Mazeau K, Morin M et al (2010) Molecular and crystal structure of 7-fold V-amylose complexed with 2-propanol. Macromolecules 43:8628–8636

    CAS  Google Scholar 

  • Nitschke F, Wang P, Schmieder P et al (2013) Hyperphosphorylation of glucosyl C6 carbons and altered structure of glycogen in the neurodegenerative epilepsy Lafora disease. Cell Metab 17:756–767

    CAS  PubMed  Google Scholar 

  • Nougué O, Corbi J, Ball SG et al (2014) Molecular evolution accompanying functional divergence of duplicated genes along the plant starch biosynthesis path. BMC Evol Biol 14(1):103. doi:10.1186/1471-2148-103

    PubMed  PubMed Central  Google Scholar 

  • Pal SK, Liput M, Piques M et al (2013) Diurnal changes of polysome loading track sucrose content in the rosette of wild-type Arabidopsis and the starchless pgm mutant. Plant Physiol 162:1246–1265

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palm DC, Rohwer JM, Hofmeyr J-HS (2013) Regulation of glycogen synthase from mammalian skeletal muscle – a unifying view of allosteric and covalent regulation. FEBS J 280:2–27

    CAS  PubMed  Google Scholar 

  • Paparelli E, Parlanti S, Gonzali S et al (2013) Nighttime sugar starvation orchestrates gibberellin biosynthesis and plant growth in Arabidopsis. Plant Cell 25:3760–3769

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park J-T, Shim J-H, Tran P et al (2011) Role of maltose enzymes in glycogen synthesis by Escherichia coli. J Bacteriol 193:2517–2526

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paul MJ, Primavesi F, Jhurreea D et al (2008) Trehalose metabolism and signalling. Annu Rev Plant Biol 59:417–441

    CAS  PubMed  Google Scholar 

  • Payne CM, Baban J, Horn SJ et al (2012) Hallmarks of processivity in glycoside hydrolases from crystallographic and computational studies of the Serratia marcescens chitinases. J Biol Chem 287:36322–36330

    CAS  PubMed  PubMed Central  Google Scholar 

  • Payne CM, Resch MG, Chen L et al (2013) Glycosylated linkers in multimodular lignocellulose-degrading enzymes dynamically bind to cellulose. Proc Natl Acad Sci U S A 110:14646–14651

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pederson BA, Turnbull J, Epp JR et al (2013) Inhibiting glycogen synthesis prevents Lafora disease in a mouse model. Ann Neurol 74:297–300

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peng M, Gao M, Båga M et al (2000) Starch-branching enzymes preferentially associated with A-type starch granules in wheat endosperm. Plant Physiol 124:265–272

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peng C, Wang Y, Liu F et al (2014) FLOURY ENDOSPERM6 encodes a CBM48 domain-containing protein involved in compound granule formation and starch synthesis in rice endosperm. Plant J 77:917–930

    CAS  PubMed  Google Scholar 

  • Pérez S, Bertoft E (2010) The molecular structure of starch components and their contribution to the architecture of starch granules: a comprehensive review. Starch-Starke 62:389–420

    Google Scholar 

  • Pfister B, Lu K-J, Eicke S et al (2014) Genetic evidence that chain length and branch point distributions are linked determinants of starch granule formation in Arabidopsis. Plant Physiol 165:1467–1474

    Google Scholar 

  • Pulido R, Hooft van Huijsduijnen R (2008) Protein tyrosine phosphatases: dual-specificity phosphatases in health and disease. FEBS J 275:848–866

    CAS  PubMed  Google Scholar 

  • Purdy SJ, Bussell JD, Nunn CP et al (2013) Leaves from the Arabidopsis maltose exporter1 mutant exhibits a metabolic profile with features of cold acclimation in the warm. PLoS ONE 8:e79412

    CAS  PubMed  PubMed Central  Google Scholar 

  • Putaux J-L, Montesanti N, Véronèse G et al (2011) Morphology and structure of A-amylose single crystals. Polymer 52:2198–2205

    CAS  Google Scholar 

  • Pyl E-T, Piques M, Ivakov A et al (2012) Metabolism and growth in Arabidopsis depend on the daytime temperature but are temperature-compensated against cool nights. Plant Cell 24:2443–2469

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qian M, Nahoum V, Bumiel J et al (2001) Enzyme-catalyzed condensation reaction in a mammalian α-amylase. High-resolution structural analysis of an enzyme-inhibitor complex. Biochemistry 40:7700–7709

    CAS  PubMed  Google Scholar 

  • Ragauskas AJ, Williams CK, Davison BH et al (2006) The path for biofuels and biomaterials. Science 311:484–489

    CAS  PubMed  Google Scholar 

  • Ragel P, Streb S, Feil R et al (2013) Loss of starch granule initiation has a deleterious effect on the growth of Arabidopsis plants due to an accumulation of ADP-glucose. Plant Physiol 163:75–85

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rao SNR, Maity R, Sharma J et al (2010) Sequestration of chaperones and proteasome into Lafora bodies and proteasomal dysfunction induced by Lafora disease-associated mutations. Hum Mol Genet 19:4726–4734

    CAS  PubMed  Google Scholar 

  • Raththagala M, Brewer MK, Parker MW et al (2015) Structural mechanism of laforin function in glycogen dephosphorylation and Lafora disease. Mol Cell 57:261–272

    CAS  PubMed  Google Scholar 

  • Regina A, Blazek J, Gilbert E et al (2012) Differential effects of genetically distinct mechanisms of elevating amylose on barley starch characteristics. Carbohydr Polym 89:979–991

    CAS  PubMed  Google Scholar 

  • Reiland S, Messerli G, Baerenfaller K et al (2009) Large-scale Arabidopsis phosphoproteome profiling reveals novel chloroplast-kinase substrates and phosphorylation networks. Plant Physiol 150:889–903

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reinhold H, Soyk S, Šimková K et al (2011) β-amylase-like proteins function as transcription factors in Arabidopsis, controlling shoot growth and development. Plant Cell 23:1391–1403

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rejek M, Stevenson CE, Southard AM et al (2011) Chemical genetics and cereal starch metabolism: structural basis of the non-covalent and covalent inhibition of barley β-amylase. Mol BioSyst 7:718–730

    Google Scholar 

  • Ritte G, Lloyd JR, Eckermann N et al (2002) The starch-related R1 protein is an alpha-glucan, water dikinase. Proc Natl Acad Sci U S A 99:7166–7171

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ritte G, Scharf A, Eckermann N et al (2004) Phosphorylation of transitory starch is increased during degradation. Plant Physiol 135:2068–2077

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roach PJ, DePaoli AA, Hurley TD et al (2012) Glycogen and its metabolism: some new developments and old themes. Biochem J 441:763–787

    CAS  PubMed  Google Scholar 

  • Roberts EH (1973) Predicting the storage life of seeds. Seed Sci Technol 1:499–514

    Google Scholar 

  • Roblin P, Potocki-Véronèse G, Guieysse D et al (2013) SAXS Conformational tracking of amylose synthesized by amylosucrase. Biomacromolecules 14:232–239

    CAS  PubMed  Google Scholar 

  • Ruan Y-L (2014) Sucrose metabolism: gateway to diverse carbon use and sugar signaling. Annu Rev Plant Biol 65:26.1–26.35

    Google Scholar 

  • Ruzanski C, Smirnova J, Rejzek M et al (2013) A bacterial glucanotransferase can replace the complex maltose metabolism required for starch-to-sucrose conversion in leaves at night. J Biol Chem 288:28581–28598

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu J-H, Drain J, Kim JH et al (2009) Comparative structural analyses of purified glycogen particles from rat liver, human skeletal muscle and commercial preparations. Int J Biol Macromol 45:478–482

    CAS  PubMed  Google Scholar 

  • Salazar C, Höfer T (2009) Multiple protein phosphorylation – from molecular mechanisms to kinetic models. FEBS J 276:3177–3198

    CAS  PubMed  Google Scholar 

  • Sankhala RS, Koksai AC, Ho L et al (2015) Dimeric quarternary structure of human laforin. J Biol Chem 290:4552–4559

    CAS  PubMed  Google Scholar 

  • Santelia D, Kötting O, Seung D et al (2011) The phosphoglucan phosphatase like SEX Four2 dephosphorylates starch at the C3-position in Arabidopsis. Plant Cell 23:4096–4111

    CAS  PubMed  PubMed Central  Google Scholar 

  • Satoh H, Shibahara K, Tokunaga T et al (2008) Mutation of the plastidial alpha-glucan phosphorylase gene in rice affects the synthesis and structure of starch in the endosperm. Plant Cell 20:1833–1849

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scheidig A, Fröhlich A, Schulze S et al (2002) Downregulation of a chloroplast-targeted β-amylase leads to a starch-excess phenotype in leaves. Plant J 30:581–591

    CAS  PubMed  Google Scholar 

  • Schmitz J, Heinrichs L, Scossa F et al (2014) The essential role of sugar metabolism in the acclimation response of Arabidopsis thaliana to high light intensities. J Exp Bot 65:1619–1636

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schönknecht G, Chen W-H, Ternes CM et al (2013) Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote. Science 339:1207–1210

    PubMed  Google Scholar 

  • Shaik SS, Carciofi M, Martens HJ et al (2014) Starch bioengineering affects cereal grain germination and seedling establishment. J Exp Bot 65:2257–2270

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shang BZ, Chang R, Chu J-W (2013) Systems-level modelling with molecular resolution elucidates the rate-limiting mechanisms of cellulose decomposition by cellobiohydrolases. J Biol Chem 288:29081–29089

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shimonaga T, Konishi M, Oyama Y et al (2008) Variation in storage α-glucans of the Porphyridiales (Rhodophyta). Plant Cell Physiol 49:103–116

    CAS  PubMed  Google Scholar 

  • Silver DM, Silva LP, Issakidis-Bourguet E et al (2013) Insight into the redox regulation of the phosphoglucan phosphatase SEX4 involved in starch degradation. FEBS J 280:538–548

    CAS  PubMed  Google Scholar 

  • Silver DM, Kötting O, Moorhead GB (2014) Phosphoglucan phosphatase function sheds light on starch degradation. Trends Plant Sci 19:471–478

    CAS  PubMed  Google Scholar 

  • Sim L, Beeren SR, Findinier J et al (2014) Crystal structure of the Chlamydomonas starch debranching isoamylase ISA1 reveals insights into the mechanism of branch trimming and complex assembly. J Biol Chem 289:22991–23003

    CAS  PubMed  Google Scholar 

  • Skeffington AW, Graf A, Duxbury Z et al (2014) Glucan, water dikinase exerts little control over starch degradation in Arabidopsis leaves at night. Plant Physiol 165:866–879

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smirnova J (2013) Carbohydrate-active enzymes metabolising maltose: kinetic and structural features. Dissertation, University of Potsdam

    Google Scholar 

  • Smith SM, Fulton DC, Chia T et al (2004) Diurnal changes in the transcriptome encoding enzymes of starch metabolism provide evidence for both transcriptional and posttranscriptional regulation of starch metabolism in Arabidopsis leaves. Plant Physiol 136:2687–2699

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sokolov LN, Dominguez-Solis JR, Allary AL et al (2006) A redox-regulated chloroplast protein phosphatase binds to starch diurnally and functions in its accumulation. Proc Natl Acad Sci USA 103:9732–9737

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sonnewald U, Kossmann J (2013) Starches – from current models to genetic engineering. Plant Biotechnol J 11:223–232

    CAS  PubMed  Google Scholar 

  • Soyk S, Šimková K, Zürcher E et al (2014) The enzyme-like domain of Arabidopsis nuclear β-amylases is critical for DNA sequence recognition and transcriptional activity. Plant Cell 26:1746–1763

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sparks E, Wachsmann G, Benfey PN (2013) Spatiotemporal signaling in plant development. Nat Rev Genet 14:631–644

    CAS  PubMed  Google Scholar 

  • Sreenivaculu N, Usadel B, Winter A et al (2008) Barley grain maturation and germination: metabolic pathway and regulatory network commonalities and differences highlighted by new MapMan/PageMan profiling tools. Plant Physiol 146:310–327

    Google Scholar 

  • Sreenivasulu N, Wobus U (2013) Seed-development programs: a systems biology-based comparison between dicots and monocots. Annu Rev Plant Biol 64:189–217

    CAS  PubMed  Google Scholar 

  • Steichen JM, Petty RV, Sharkey TD (2008) Domain characterization of a 4-alpha-glucanotransferase essential for maltose metabolism in photosynthetic leaves. J Biol Chem 283:20797–20804

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stettler M, Eicke S, Mettler T et al (2009) Blocking the metabolism of starch breakdown products in Arabidopsis leaves triggers chloroplast degradation. Mol Plant 2:1233–1246

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steup M, Schächtele C (1981) Mode of glucan degradation by purified phosphorylase forms from spinach leaves. Planta 153:351–361

    CAS  PubMed  Google Scholar 

  • Stitt M, Zeeman SC (2012) Starch turnover: pathways, regulation and role in growth. Curr Opin Plant Biol 15:282–292

    CAS  PubMed  Google Scholar 

  • Stoddard FL (1999) Survey of starch particle-size distribution in wheat and related species. Cereal Chem 67:59–63

    Google Scholar 

  • Streb S, Delatte T, Umhang M et al (2008) Starch granule biosynthesis in Arabidopsis is abolished by removal of all debranching enzymes but restored by the subsequent removal of an endoamylase. Plant Cell 20:3448–3466

    CAS  PubMed  PubMed Central  Google Scholar 

  • Streb S, Eicke S, Zeeman SC (2012) The simultaneous abolition of three starch hydrolases blocks transient starch breakdown in Arabidopsis. J Biol Chem 287:41745–41756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan MA, Aroney STN, Li S et al (2014) Changes in glycogen structure over feeding cycles sheds new light on blood-glucose control. Biomacromolecules 15:660–665

    CAS  PubMed  Google Scholar 

  • Sulpice R, Flis A, Ivakov AA, Apelt F et al (2014) Arabidopsis coordinates the diurnal regulation of carbon allocation and growth across a wide range of photoperiods. Mol Plant 7:137–155

    CAS  PubMed  Google Scholar 

  • Sun T-P (2011) The molecular mechanism and evolution of the GA-GID1-DELLA signalling module in plants. Curr Biol 21:R338–R345

    CAS  PubMed  Google Scholar 

  • Sun X, Jones WT, Rikkerink EHA (2012) GRAS proteins: the versatile roles of intrinsically disordered proteins in plant signalling. Biochem J 442:1–12

    CAS  PubMed  Google Scholar 

  • Sundberg M, Pfister B, Fulton D et al (2013) The heteromultimeric debranching enzyme involved in starch synthesis in Arabidopsis requires both isoamylase1 and isoamyoase2 subunits for complex stability and activity. PLos ONE 8:e75223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Szecowka M, Heise R, Tohge T et al (2013) Metabolic fluxes of an illuminated Arabidopsis thaliana rosette. Plant Cell 25:694–714

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tagliabracci VS, Heiss C, Karthlic C et al (2011) Phosphate incorporation during glycogen biosynthesis and Lafora disease. Cell Metab 13:274–282

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takeda Y, Hizukuri S (1981) Re-examination of the action of sweet-potato beta-amylase on phosphorylated (1 → 4)-α-D-glucan. Carbohydr Res 89:174–178

    CAS  Google Scholar 

  • Tanackovic V, Svenson JT, Jensen S et al (2014) The deposition and characterization of starch in Brachypodium distachyon. J Exp Bot 65:5179–5192

    PubMed  PubMed Central  Google Scholar 

  • Tan-Wilson AL, Wilson KA (2012) Mobilization of seed protein reserves. Physiol Plant 145:140–153

    CAS  PubMed  Google Scholar 

  • Tsuji H, Aya K, Ueguchi-Tanaka M et al (2006) GAMYB controls different sets of genes and is differentially regulated by microRNA in aleurone cells and anthers. Plant J 47:427–444

    CAS  PubMed  Google Scholar 

  • Turgeon R, Wolf S (2009) Phloem transport: cellular pathways and molecular trafficking. Annu Rev Plant Biol 60:207–221

    CAS  PubMed  Google Scholar 

  • Turnbull J, Wang P, Girard J-M et al (2010) Glycogen hyperphosphorylation underlies lafora body formation. Ann Neurol 68:925–933

    CAS  PubMed  Google Scholar 

  • van Wijk KJ, Friso G, Walther D, Schulze WX (2014) Meta-analysis of Arabidopsis thaliana phospho-proteomics data reveals compartmentalization of phosphorylation motifs. Plant Cell 26:2367–2389

    PubMed  Google Scholar 

  • Vander Kooi CW, Taylor AO, Pace RM et al (2010) Structural basis for the glucan phosphatase activity of Starch Excess4. Proc Natl Acad Sci U S A 107:15379–15384

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vilaplana F, Hasjim J, Gilbert RG (2012) Amylose content in starches: towards optimal definition and validating experimental methods. Carbohydr Polym 88:103–111

    CAS  Google Scholar 

  • Vriet C, Welham T, Brachmann A et al (2010) A suite of Lotus japonicus starch mutants reveals both conserved and novel features of starch metabolism. Plant Physiol 154:643–655

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walley JW, Shen Z, Sartor R et al (2013) Reconstruction of protein networks from an atlas of maize seed proteotypes. Proc Natl Acad Sci U S A 110:E4808–E4817

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wattebled F, Dong Y, Dumez S et al (2005) Mutants of Arabidopsis lacking a chloroplastic isoamylase accumulate phytoglycogen and an abnormal form of amylopectin. Plant Physiol 138:184–195

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wattebled F, Planchot V, Szydlowski N et al (2008) Further evidence for the mandatory nature of polysaccharide debranching for the aggregation of semicrystalline starch and for overlapping functions of debranching enzymes in Arabidopsis leaves. Plant Physiol 148:1309–1323

    CAS  PubMed  PubMed Central  Google Scholar 

  • Webber BL, Abaloz BA, Woodrow IE (2007) Myrmecophilic food body production in the understorey tree, Ryparosa kurrangii (Archariaceae), a rare Australian rainforest taxon. New Phytol 173:250–263

    PubMed  Google Scholar 

  • Weidberg H, Shvets E, Elazar Z (2011) Biogenesis and cargo selectivity of autophagosomes. Annu Rev Biochem 80:125–156

    CAS  PubMed  Google Scholar 

  • Weise SE, Weber APM, Sharkey TD (2004) Maltose is the major form of carbon exported from the chloroplast at night. Planta 218:474–482

    CAS  PubMed  Google Scholar 

  • Weise SE, Kim KS, Stewart RP et al (2005) β-Maltose is the metabolically active anomer of maltose during transitory starch degradation. Plant Physiol 137:756–761

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weise SE, Aung K, Jarou ZJ et al (2012) Engineering starch accumulation by manipulation of phosphate metabolism of starch. Plant Biotechnol J 10:545–554

    CAS  PubMed  Google Scholar 

  • Weitbrecht K, Muller K, Leubner-Metzger G (2011) First off the mark: early seed germination. J Exp Bot 62:3289–3309

    CAS  PubMed  Google Scholar 

  • Wilson WA, Roach PJ, Montero M et al (2010) Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiol Rev 34:952–985

    CAS  PubMed  PubMed Central  Google Scholar 

  • Worby CA, Gentry MS, Dixon JE (2006) Laforin, a dual specificity phosphatase that dephosphorylates complex carbohydrates. J Biol Chem 281:30412–30418

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav UP, Ivakov A, Feil R et al (2014) The sucrose-trehalose 6-phosphate (Tre6P) nexus: specificity and mechanisms of sucrose signalling by Tre6P. J Exp Bot 65:1051–1068

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251

    CAS  PubMed  Google Scholar 

  • Yin LL, Xue HW (2012) The MADS29 transcription factor regulates the degradation of the nucellus and the nucellar projection during rice seed development. Plant Cell 24:1049–1065

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu TS, Zeeman SC, Thorneycroft D et al (2005) α-Amylase is not required for breakdown of transitory starch in Arabidopsis leaves. J Biol Chem 280:9773–9779

    CAS  PubMed  Google Scholar 

  • Yun M-S, Kawagoe Y (2010) Septum formation in amyloplasts produces compound granules in the endosperm and is regulated by plastid division proteins. Plant Cell Physiol 51:1469–1479

    CAS  PubMed  Google Scholar 

  • Zeeman SC, Umemoto T, Lue WL et al (1998) A mutant of Arabidopsis lacking a chloroplastic isoamylase accumulates both starch and phytoglycogen. Plant Cell 10:1699–1712

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeeman SC, Kossmann J, Smith AM (2010) Starch: its metabolism, evolution, and biotechnological modification in plants. Annu Rev Plant Biol 61:209–234

    CAS  PubMed  Google Scholar 

  • Zeng D, Yan M, Wang Y et al (2007) Du1, encoding a novel Prp1 protein, regulates starch biosynthesis through affecting the splicing of Wx b pre-mRNAs in rice (Oryza sativa L.). Plant Mol Biol 65:501–509

    CAS  PubMed  Google Scholar 

  • Zhang Q, Wing R (2013) Genome studies and molecular genetics: understanding the functional genome based on the rice model. Curr Opin Plant Biol 16:129–132

    CAS  PubMed  Google Scholar 

  • Zhou S-R, Yin L-L, Xue H-W (2013) Functional genomics based understanding of rice endosperm development. Curr Opin Plant Biol 16:236–246

    CAS  PubMed  Google Scholar 

  • Zi J, Mafu S, Peters RJ (2014) To gibberellins and beyond! Surveying the evolution of (di)terpenoid metabolism. Annu Rev Plant Biol 65:10.1–10.28

    Google Scholar 

  • Zirin J, Nieuwenhius J, Perrimon N (2013) Role of autophagy in glycogen breakdown and its relevance to chloroquine myopathy. PLoS Biol 11:e1001708

    PubMed  PubMed Central  Google Scholar 

  • Zulawski M, Braginets R, Schulze WX (2013) PhosPhAt goes kinases – searchable protein kinase target information in the plant phosphorylation site database PhosPhAt. Nucleic Acids Res 41:D1176–D1184

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

JS gratefully acknowledges a postdoctoral fellowship from the Deutsche Forschungsgemeinschaft (DFG). MS thanks the Max Planck Institute of Molecular Plant Physiology (Potsdam, Germany) and the University of Guelph (Canada) for providing unlimited access to the library.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Steup .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Smirnova, J., Fernie, A.R., Steup, M. (2015). Starch Degradation. In: Nakamura, Y. (eds) Starch. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55495-0_7

Download citation