Advertisement

Starch pp 93-158 | Cite as

The Transition from Glycogen to Starch Metabolism in Cyanobacteria and Eukaryotes

  • Steven BallEmail author
  • Christophe Colleoni
  • Maria Cecilia Arias

Abstract

α-1,4-linked glucan chains branched through α-1,6 glucosidic lineages define the most frequently found storage polysaccharides in living cells. These glucans come in two very distinct forms known as glycogen and starch. The small water-soluble glycogen particles distribute widely in Archaea, Bacteria, and heterotrophic eukaryotes, while semicrystalline solid starch seems to be restricted to photosynthetic eukaryotes. This review focusses on the so-called glycosyl-nucleotide-dependent pathway of starch and glycogen synthesis. Through comparative biochemistry of storage polysaccharide metabolism in distinct clades, we will review the evidence sustaining that starch has evolved from preexisting glycogen metabolism several times during the evolution of photosynthetic eukaryotes and cyanobacteria. This review will also describe the possible function of storage polysaccharide metabolism in establishing metabolic symbiosis during plastid endosymbiosis. We will detail the evidence sustaining that storage polysaccharide metabolism was used by three distinct organisms to establish a tripartite symbiosis that facilitated metabolic integration of free-living cyanobacteria into evolving organelles.

Keywords

Starch Amylopectin Glucan Amylose Glycogen Photosynthesis Endosymbiosis Chlamydia 

References

  1. Albrecht T, Haebel S, Koch A et al (2004) Yeast glycogenin (Glg2p) produced in Escherichia coli is simultaneously glucosylated at two vicinal tyrosine residues but results in a reduced bacterial glycogen accumulation. Eur J Biochem 271:3978–3989PubMedGoogle Scholar
  2. Alonso-Casajus N, Dauvillee D, Viale AM et al (2006) Glycogen phosphorylase, the product of the glgP Gene, catalyzes glycogen breakdown by removing glucose units from the nonreducing ends in Escherichia coli. J Bacteriol 188:5266–5272PubMedCentralPubMedGoogle Scholar
  3. Archibald JM, Lane CE (2009) Going, going, not quite gone: nucleomorphs as a case study in nuclear genome reduction. J Hered 100:582–590PubMedGoogle Scholar
  4. Arias MC, Danchin EG, Coutinho P et al (2012) Eukaryote to gut bacteria transfer of a glycoside hydrolase gene essential for starch breakdown in plants. Mob Genet Elem 2:81–87Google Scholar
  5. Badger MR, Price GD (2003) CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot 54:609–622PubMedGoogle Scholar
  6. Ball S (1998) Regulation of starch biosynthesis. Kluwer Academic Publishers, DordrechtGoogle Scholar
  7. Ball S (2002) The intricate pathway of starch biosynthesis and degradation in the monocellular alga Chlamydomonas reinhardtii. Aust J Chem 55:1–11Google Scholar
  8. Ball S, Deschamps P (2008) Starch metabolism. In: Stem DB (ed) The chlamydomonas sourcebook: 2. Organellar and metabolic processes. Academic, London, pp 1–40Google Scholar
  9. Ball S, Guan HP, James M et al (1996) From glycogen to amylopectin: a model for the biogenesis of the plant starch granule. Cell 86:349–352PubMedGoogle Scholar
  10. Ball S, Colleoni C, Cenci U et al (2011) The evolution of glycogen and starch metabolism in eukaryotes gives molecular clues to understand the establishment of plastid endosymbiosis. J Exp Bot 62:1775–1801PubMedGoogle Scholar
  11. Ball SG, Subtil A, Bhattacharya D et al (2013) Metabolic effectors secreted by bacterial pathogens: essential facilitators of plastid endosymbiosis? Plant Cell 25:7–21PubMedCentralPubMedGoogle Scholar
  12. Bandyopadhyay A, Elvitigala T, Liberton M et al (2013) Variations in the rhythms of respiration and nitrogen fixation in members of the unicellular diazotrophic cyanobacterial genus Cyanothece. Plant Physiol 161:1334–1346PubMedCentralPubMedGoogle Scholar
  13. Bäumer D, Preisfeld A, Ruppel HG (2001) Isolation and characterization of paramylon synthase from Euglena gracilis (Euglenophyceae). J Phycol 37:38–46Google Scholar
  14. Baurain D, Brinkmann H, Petersen J et al (2010) Phylogenomic evidence for separate acquisition of plastids in cryptophytes, haptophytes, and stramenopiles. Mol Biol Evol 27:1698–1709PubMedGoogle Scholar
  15. Becker B, Hoef-Emden K, Melkonian M (2008) Chlamydial genes shed light on the evolution of photoautotrophic eukaryotes. BMC Evol Biol 8:203PubMedCentralPubMedGoogle Scholar
  16. Beller M, Thiel K, Thul P et al (2010) Lipid droplets: a dynamic organelle moves into focus. FEBS Lett 584:2176–2182PubMedGoogle Scholar
  17. Bergman B, Gallon JR, Rai AN et al (1997) N2 fixation by non-heterocystous cyanobacteria. FEMS Microbiol Rev 19:139–185Google Scholar
  18. Bhattacharya D, Archibald JM, Weber AP et al (2007) How do endosymbionts become organelles? Understanding early events in plastid evolution. Bioessays 29:1239–1246PubMedGoogle Scholar
  19. Bhattacharya D, Price DC, Chan CX et al (2013) Genome of the red alga Porphyridium purpureum. Nat Commun 4:1941PubMedCentralPubMedGoogle Scholar
  20. Blank CE, Sanchez-Baracaldo P (2010) Timing of morphological and ecological innovations in the cyanobacteria – a key to understanding the rise in atmospheric oxygen. Geobiology 8:1–23PubMedGoogle Scholar
  21. Borowitza MA (1978) Plastid development and floridean starch grain formation during carposporogenesis in the coralline red alga Lithothrix aspergillum gray. Protoplasma 95:217–228Google Scholar
  22. Brautigan DL (2013) Protein Ser/Thr phosphatases – the ugly ducklings of cell signalling. FEBS J 280:324–345PubMedGoogle Scholar
  23. Burris RH (1991) Nitrogenase. J Biol Chem 266:9339–9342PubMedGoogle Scholar
  24. Busi MV, Barchiesi J, Martin M et al (2013) Starch metabolism in green algae. Starch/Stärke 66:28–40Google Scholar
  25. Cavalier-Smith T (1999) Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J Eukaryot Microbiol 46:347–366PubMedGoogle Scholar
  26. Cavalier-Smith T, Chao EE, Snell EA et al (2014) Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa. Mol Phylogenet Evol 81C:71–85Google Scholar
  27. Cenci U, Chabi M, Ducatez M et al (2013) Convergent evolution of polysaccharide debranching defines a common mechanism for starch accumulation in cyanobacteria and plants. Plant Cell 25:3961–3975PubMedCentralPubMedGoogle Scholar
  28. Cenci U, Nitschke F, Steup M et al (2014) Transition from glycogen to starch metabolism in Archaeplastida. Trends Plant Sci 19:18–28PubMedGoogle Scholar
  29. Chandra G, Chater KF, Bornemann S (2011) Unexpected and widespread connections between bacterial glycogen and trehalose metabolism. Microbiology 157:1565–1572PubMedGoogle Scholar
  30. Charng YY, Kakefuda G, Iglesias AA et al (1992) Molecular cloning and expression of the gene encoding ADP-glucose pyrophosphorylase from the cyanobacterium Anabaena sp. strain PCC 7120. Plant Mol Biol 20:37–47PubMedGoogle Scholar
  31. Choi JH, Lee H, Kim YW et al (2009) Characterization of a novel debranching enzyme from Nostoc punctiforme possessing a high specificity for long branched chains. Biochem Biophys Res Commun 378:224–229PubMedGoogle Scholar
  32. Collen J, Porcel B, Carre W et al (2013) Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida. Proc Natl Acad Sci U S A 110:5247–5252PubMedCentralPubMedGoogle Scholar
  33. Colleoni C, Suzuki E (2012) Chapter 5: Storage polysaccharide metabolism in Cyanobacteria. In: Tetlow IJ (ed) Starch: origins, structure and metabolism, vol 5, Essential reviews in experimental biology. Society for Experimental Biology, LondonGoogle Scholar
  34. Colleoni C, Linka M, Deschamps P et al (2010) Phylogenetic and biochemical evidence supports the recruitment of an ADP-glucose translocator for the export of photosynthate during plastid endosymbiosis. Mol Biol Evol 27:2691–2701PubMedGoogle Scholar
  35. Collingro A, Tischler P, Weinmaier T et al (2011) Unity in variety – the pan-genome of the Chlamydiae. Mol Biol Evol 28:3253–3270PubMedCentralPubMedGoogle Scholar
  36. Compaore J, Stal LJ (2010) Oxygen and the light–dark cycle of nitrogenase activity in two unicellular cyanobacteria. Environ Microbiol 12:54–62PubMedGoogle Scholar
  37. Coppin A, Varre JS, Lienard L et al (2004) Evolution of plant-like crystalline storage polysaccharide in the protozoan parasite Toxoplasma gondii argues for a red alga ancestry. J Mol Evol 60:257–267Google Scholar
  38. Coutinho PM, Henrissat B (1999) Carbohydrate-active enzymes: an integrated database approach. Royal Society of Chemistry, CambridgeGoogle Scholar
  39. Crowe SA, Dossing LN, Beukes NJ et al (2013) Atmospheric oxygenation three billion years ago. Nature 501:535–538PubMedGoogle Scholar
  40. Curatti L, Giarrocco LE, Cumino AC et al (2008) Sucrose synthase is involved in the conversion of sucrose to polysaccharides in filamentous nitrogen-fixing cyanobacteria. Planta 228:617–625PubMedGoogle Scholar
  41. Curtis BA, Tanifuji G, Burki F et al (2012) Cryptophyte and chlorarachniophyte nuclear genomes reveal evolutionary mosaicism and fate of nucleomorphs. Nature 492:59–65PubMedGoogle Scholar
  42. Dauvillée D, Kinderf IS, Li Z et al (2005) Role of the Escherichia coli glgX gene in glycogen metabolism. J Bacteriol 187:1465–1473PubMedCentralPubMedGoogle Scholar
  43. Dauvillee D, Deschamps P, Ral JP et al (2009) Genetic dissection of floridean starch synthesis in the cytosol of the model dinoflagellate Crypthecodinium cohnii. Proc Natl Acad Sci U S A 106:21126–21130PubMedCentralPubMedGoogle Scholar
  44. Deane JA, Strachan IM, Saunders GW et al (2002) Cryptomonad evolution: nuclear 18S rDNA phylogeny versus cell morphology and pigmentation. J Phycol 38:1236–1244Google Scholar
  45. Delrue B, Fontaine T, Routier F et al (1992) Waxy Chlamydomonas reinhardtii: monocellular algal mutants defective in amylose biosynthesis and granule-bound starch synthase activity accumulate a structurally modified amylopectin. J Bacteriol 174:3612–3620PubMedCentralPubMedGoogle Scholar
  46. Delwiche CF (1999) Tracing the thread of plastid diversity through the tapestry of life. Am Nat 154:S164–S177PubMedGoogle Scholar
  47. Deschamps P, Haferkamp I, Dauvillée D et al (2006) Nature of the periplastidial pathway of starch synthesis in the cryptophyte Guillardia theta. Eukaryot Cell 5:954–963PubMedCentralPubMedGoogle Scholar
  48. Deschamps P, Colleoni C, Nakamura Y et al (2008a) Metabolic symbiosis and the birth of the plant kingdom. Mol Biol Evol 25:536–548PubMedGoogle Scholar
  49. Deschamps P, Guillebeault D, Devassine J et al (2008b) The heterotrophic dinoflagellate Crypthecodinium cohnii defines a model genetic system to investigate cytoplasmic starch synthesis. Eukaryot Cell 7:872–880PubMedCentralPubMedGoogle Scholar
  50. Deschamps P, Haferkamp I, d’Hulst C et al (2008c) The relocation of starch metabolism to chloroplasts: when, why and how. Trends Plant Sci 13:574–582PubMedGoogle Scholar
  51. Deschamps P, Moreau H, Worden AZ et al (2008d) Early gene duplication within chloroplastida and its correspondence with relocation of starch metabolism to chloroplasts. Genetics 178:2373–2387PubMedCentralPubMedGoogle Scholar
  52. Devillers CH, Piper ME, Ballicora MA et al (2003) Characterization of the branching patterns of glycogen branching enzyme truncated on the N-terminus. Arch Biochem Biophys 418:34–38PubMedGoogle Scholar
  53. Douglas SE, Penny SL (1999) The plastid genome of the cryptophyte alga, Guillardia theta: complete sequence and conserved synteny groups confirm its common ancestry with red algae. J Mol Evol 48:236–244PubMedGoogle Scholar
  54. Douglas S, Zauner S, Fraunholz M et al (2001) The highly reduced genome of an enslaved algal nucleus. Nature 410:1091–1096PubMedGoogle Scholar
  55. Ekman P, Yu S, Pedersén M (1991) Effects of altered salinity, darkness and algal nutrient status on floridoside and starch content, alpha-galactosidase activity and agar yield of cultivated Gracilaria sordida. Br Phycol J 26:123–131Google Scholar
  56. Facchinelli F, Pribil M, Oster U et al (2013) Proteomic analysis of the Cyanophora paradoxa muroplast provides clues on early events in plastid endosymbiosis. Planta 237:637–651PubMedGoogle Scholar
  57. Falcon LI, Cipriano F, Chistoserdov AY et al (2002) Diversity of diazotrophic unicellular cyanobacteria in the tropical North Atlantic Ocean. Appl Environ Microbiol 68:5760–5764PubMedCentralPubMedGoogle Scholar
  58. Falkowski P, Raven JA (2007) Aquatic photosynthesis. Princeton University Press, PrincetonGoogle Scholar
  59. Fathinejad S, Steiner JM, Reipert S et al (2008) A carboxysomal carbon-concentrating mechanism in the cyanelles of the ‘coelacanth’ of the algal world, Cyanophora paradoxa? Physiol Plant 133:27–32PubMedGoogle Scholar
  60. Fettke J, Hejazi M, Smirnova J et al (2009) Eukaryotic starch degradation: integration of plastidial and cytosolic pathways. J Exp Bot 60:2907–2922PubMedGoogle Scholar
  61. Forsyth G, Hirst EL, Oxford AE (1953) Protozoal polysaccharides. Structure of a polysaccharide produced by Cycloposthium. J Chem Soc 2030–2033Google Scholar
  62. Fredrick JF (1968) Biochemical evolution of glucosyl transferase isozymes in algae. Ann N Y Acad Sci 151:413–423PubMedGoogle Scholar
  63. Frueauf JB, Ballicora MA, Preiss J (2002) Alteration of inhibitor selectivity by site-directed mutagenesis of Arg(294) in the ADP-glucose pyrophosphorylase from Anabaena PCC 7120. Arch Biochem Biophys 400:208–214PubMedGoogle Scholar
  64. Fu J, Xu X (2006) The functional divergence of two glgP homologues in Synechocystis sp. PCC 6803. FEMS Microbiol Lett 260:201–209PubMedGoogle Scholar
  65. Glöckner G, Noegel A (2013) Comparative genomics in the Amoebozoa clade. Biol Rev 88:215–225PubMedGoogle Scholar
  66. Goldemberg SH, Marechal LR (1963) Biosynthesis of paramylon in Euglena gracilis. Biochim Biophys Acta 71:743–744PubMedGoogle Scholar
  67. Grosche C, Hempel F, Bolte K et al (2014) The periplastidal compartment: a naturally minimized eukaryotic cytoplasm. Curr Opin Microbiol 22C:88–93Google Scholar
  68. Grundel M, Scheunemann R, Lockau W et al (2012) Impaired glycogen synthesis causes metabolic overflow reactions and affects stress responses in the Cyanobacterium Synechocystis sp. PCC 6803. Microbiology 158:3032–3043PubMedGoogle Scholar
  69. Guerra LT, Xu Y, Bennette N et al (2013) Natural osmolytes are much less effective substrates than glycogen for catabolic energy production in the marine cyanobacterium Synechococcus sp. strain PCC 7002. J Biotechnol 166:65–75PubMedGoogle Scholar
  70. Haferkamp I, Deschamps P, Ast M et al (2006) Molecular and biochemical analysis of periplastidial starch metabolism in the cryptophyte Guillardia theta. Eukaryot Cell 5:964–971PubMedCentralPubMedGoogle Scholar
  71. Henrissat B, Deleury E, Coutinho PM (2002) Glycogen metabolism loss: a common marker of parasitic behaviour in bacteria? Trends Genet 18:437–440PubMedGoogle Scholar
  72. Higo A, Katoh H, Ohmori K et al (2006) The role of a gene cluster for trehalose metabolism in dehydration tolerance of the filamentous cyanobacterium Anabaena sp. PCC 7120. Microbiology 152:979–987PubMedGoogle Scholar
  73. Hirabaru C, Izumo A, Fujiwara S et al (2010) The primitive rhodophyte Cyanidioschyzon merolae contains a semiamylopectin-type, but not an amylose-type, alpha-glucan. Plant Cell Physiol 51:682–693PubMedGoogle Scholar
  74. Huang J, Gogarten JP (2007) Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids? Genome Biol 8:R99PubMedCentralPubMedGoogle Scholar
  75. Husnik F, Nikoh N, Koga R et al (2013) Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis. Cell 153:1567–1578PubMedGoogle Scholar
  76. Izumo A, Fujiwara S, Sakurai T et al (2011) Effects of granule-bound starch synthase I-defective mutation on the morphology and structure of pyrenoidal starch in Chlamydomonas. Plant Sci 180:238–245PubMedGoogle Scholar
  77. James MG, Robertson DS, Myers AM (1995) Characterization of the maize gene sugary1, a determinant of starch composition in kernels. Plant Cell 7:417–429PubMedCentralPubMedGoogle Scholar
  78. Kiel JA, Boels JM, Beldman G et al (1990) Nucleotide sequence of the Synechococcus sp. PCC7942 branching enzyme gene (glgB): expression in Bacillus subtilis. Gene 89:77–84PubMedGoogle Scholar
  79. Kiss JK, Roberts EM, Brown RM et al (1988) X-ray and dissolution studies of paramylon storage granules from Euglena. Protoplasma 146:150–156Google Scholar
  80. Kopp RE, Kirschvink JL, Hilburn IA et al (2005) The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. Proc Natl Acad Sci U S A 102:11131–11136PubMedCentralPubMedGoogle Scholar
  81. Kotting O, Pusch K, Tiessen A et al (2005) Identification of a novel enzyme required for starch metabolism in Arabidopsis leaves. The phosphoglucan, water dikinase. Plant Physiol 137:242–252PubMedCentralPubMedGoogle Scholar
  82. Kotting O, Santelia D, Edner C et al (2009) STARCH-EXCESS4 is a laforin-like Phosphoglucan phosphatase required for starch degradation in Arabidopsis thaliana. Plant Cell 21:334–346PubMedCentralPubMedGoogle Scholar
  83. Kubo A, Fujita N, Harada K et al (1999) The starch-debranching enzymes isoamylase and pullulanase are both involved in amylopectin biosynthesis in rice endosperm. Plant Physiol 121:399–410PubMedCentralPubMedGoogle Scholar
  84. Ladeira RB, Freitas MA, Silva EF et al (2005) Glycogen as a carbohydrate energy reserve in trophozoites of Giardia lamblia. Parasitol Res 96:418–421PubMedGoogle Scholar
  85. Lafora GR, Glueck B (1911) Beitrag zur histopathologie der myoklonischen epilepsie. Z Gesamte Neurol Psychiatr 6:1–14Google Scholar
  86. Larsson J, Nylander JA, Bergman B (2011) Genome fluctuations in cyanobacteria reflect evolutionary, developmental and adaptive traits. BMC Evol Biol 11:187PubMedCentralPubMedGoogle Scholar
  87. Latysheva N, Junker VL, Palmer WJ et al (2012) The evolution of nitrogen fixation in cyanobacteria. Bioinformatics 28:603–606PubMedGoogle Scholar
  88. Le Gall L, Saunders GW (2007) A nuclear phylogeny of the Florideophyceae (Rhodophyta) inferred from combined EF2, small subunit and large subunit ribosomal DNA: establishing the new red algal subclass Corallinophycidae. Mol Phylogenet Evol 43:1118–1130PubMedGoogle Scholar
  89. Linka M, Jamai A, Weber AP (2008) Functional characterization of the plastidic phosphate translocator gene family from the thermo-acidophilic red alga Galdieria sulphuraria reveals specific adaptations of primary carbon partitioning in green plants and red algae. Plant Physiol 148:1487–1496PubMedCentralPubMedGoogle Scholar
  90. Lister DL, Bateman JM, Purton S et al (2003) DNA transfer from chloroplast to nucleus is much rarer in Chlamydomonas than in tobacco. Gene 316:33–38PubMedGoogle Scholar
  91. Lluisma AO, Ragan MA (1998) Characterization of a galactose-1-phosphate uridylyltransferase gene from the marine red alga Gracilaria gracilis. Curr Genet 34:112–119PubMedGoogle Scholar
  92. Loddenkotter B, Kammerer B, Fischer K et al (1993) Expression of the functional mature chloroplast triose phosphate translocator in yeast internal membranes and purification of the histidine-tagged protein by a single metal-affinity chromatography step. Proc Natl Acad Sci U S A 90:2155–2159PubMedCentralPubMedGoogle Scholar
  93. Lorenzo-Morales J, Kliescikova J, Martinez-Carretero E et al (2008) Glycogen phosphorylase in Acanthamoeba spp.: determining the role of the enzyme during the encystment process using RNA interference. Eukaryot Cell 7:509–517PubMedCentralPubMedGoogle Scholar
  94. Lou J, Dawson KA, Strobel HJ (1997) Glycogen biosynthesis via UDP-glucose in the ruminal bacterium Prevotella bryantii B1(4). Appl Environ Microbiol 63:4355–4359PubMedCentralPubMedGoogle Scholar
  95. Lu Y, Sharkey TD (2006) The importance of maltose in transitory starch breakdown. Plant Cell Environ 29:353–366PubMedGoogle Scholar
  96. Lu C, Lei L, Peng B et al (2013) Chlamydia trachomatis GlgA is secreted into host cell cytoplasm. PLoS One 8:e68764PubMedCentralPubMedGoogle Scholar
  97. Maddelein ML, Libessart N, Bellanger F et al (1994) Toward an understanding of the biogenesis of the starch granule. Determination of granule-bound and soluble starch synthase functions in amylopectin synthesis. J Biol Chem 269:25150–25157PubMedGoogle Scholar
  98. Manners DJ, Ryley JF (1952) Studies on the metabolism of the Protozoa. II. The glycogen of the ciliate Tetrahymena pyriformis (Glaucoma piriformis). Biochem J 52:480–482PubMedCentralPubMedGoogle Scholar
  99. Manners DJ, Ryley JF (1955) Studies on the metabolism of the protozoa. 6. The glycogens of the parasitic flagellates Trichomonas foetus and Trichomonas gallinae. Biochem J 59:369–372PubMedCentralPubMedGoogle Scholar
  100. Marin B, Nowack EC, Melkonian M (2005) A plastid in the making: evidence for a second primary endosymbiosis. Protist 156:425–432PubMedGoogle Scholar
  101. Martijn J, Ettema TJ (2013) From archaeon to eukaryote: the evolutionary dark ages of the eukaryotic cell. Biochem Soc Trans 41:451–457PubMedGoogle Scholar
  102. Matsuzaki M, Misumi O, Shin IT et al (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428:653–657PubMedGoogle Scholar
  103. McCracken DA, Cain JR (1981) Amylose in Floridean starch. New Phytol 88Google Scholar
  104. Meeuse BJ, Kreger DR (1954) On the nature of floridean starch and Ulva starch. Biochim Biophys Acta 13:593–595PubMedGoogle Scholar
  105. Meeuse BJ, Andries M, Wood JA (1960) Floridean starch. J Exp Bot 11:129–140Google Scholar
  106. Miao X, Wu Q, Wu G et al (2003) Sucrose accumulation in salt-stressed cells of agp gene deletion-mutant in cyanobacterium Synechocystis sp PCC 6803. FEMS Microbiol Lett 218:71–77PubMedGoogle Scholar
  107. Moran-Zorzano MT, Alonso-Casajus N, Munoz FJ et al (2007) Occurrence of more than one important source of ADPglucose linked to glycogen biosynthesis in Escherichia coli and Salmonella. FEBS Lett 581:4423–4429PubMedGoogle Scholar
  108. Moriyama T, Sakurai K, Sekine K et al (2014) Subcellular distribution of central carbohydrate metabolism pathways in the red alga Cyanidioschyzon merolae. Planta 240:585–598PubMedGoogle Scholar
  109. Mouille G, Maddelein ML, Libessart N et al (1996) Preamylopectin processing: a mandatory step for starch biosynthesis in plants. Plant Cell 8:1353–1366PubMedCentralPubMedGoogle Scholar
  110. Moustafa A, Reyes-Prieto A, Bhattacharya D (2008) Chlamydiae has contributed at least 55 genes to Plantae with predominantly plastid functions. PLoS One 3:e2205PubMedCentralPubMedGoogle Scholar
  111. Murakami T, Kanai T, Takata H et al (2006) A novel branching enzyme of the GH-57 family in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J Bacteriol 188:5915–5924PubMedCentralPubMedGoogle Scholar
  112. Nagashima H, Nakamura S, Nisizawa K et al (1971) Enzymatic synthesis of floridean starch in red alga Serraticardia maxima. Plant Cell Physiol 12:243–253Google Scholar
  113. Nakamura Y, Takahashi J, Sakurai A et al (2005) Some Cyanobacteria synthesize semi-amylopectin type alpha-polyglucans instead of glycogen. Plant Cell Physiol 46:539–545PubMedGoogle Scholar
  114. Nakayama A, Yamamoto K, Tabata S (2001) Identification of the catalytic residues of bifunctional glycogen debranching enzyme. J Biol Chem 276:28824–28828PubMedGoogle Scholar
  115. Nelson OE, Rines HW (1962) The enzymatic deficiency in the waxy mutant of maize. Biochem Biophys Res Commun 9:297–300PubMedGoogle Scholar
  116. Nowack EC, Melkonian M, Glockner G (2008) Chromatophore genome sequence of Paulinella sheds light on acquisition of photosynthesis by eukaryotes. Curr Biol 18:410–418PubMedGoogle Scholar
  117. Nyvall P, Pelloux J, Davies HV et al (1999) Purification and characterisation of a novel starch synthase selective for uridine 5′-diphosphate glucose from the red alga Gracilaria tenuistipitata. Planta 209:143–152PubMedGoogle Scholar
  118. Nyvall P, Pedersen M, Kenne L et al (2000) Enzyme kinetics and chemical modification of alpha-1,4-glucan lyase from Gracilariopsis sp. Phytochemistry 54:139–145PubMedGoogle Scholar
  119. Ojcius DM, Degani H, Mispelter J et al (1998) Enhancement of ATP levels and glucose metabolism during an infection by Chlamydia. NMR studies of living cells. J Biol Chem 273:7052–7058PubMedGoogle Scholar
  120. Pade N, Linka N, Ruth W et al (2014) Floridoside and isofloridoside are synthesized by trehalose 6-phosphate synthase-like enzymes in the red alga Galdieria sulphuraria. New Phytol. doi: 10.1111/nph.13108
  121. Page-Sharp M, Behm CA, Smith GD (1999) Involvement of the compatible solutes trehalose and sucrose in the response to salt stress of a cyanobacterial Scytonema species isolated from desert soils. Biochim Biophys Acta 1472:519–528PubMedGoogle Scholar
  122. Palmer TN, Ryman BE, Whelan WJ (1976) The action pattern of amylomaltase from Escherichia coli. Eur J Biochem 69:105–115PubMedGoogle Scholar
  123. Park JT, Shim JH, Tran PL et al (2011) Role of maltose enzymes in glycogen synthesis by Escherichia coli. J Bacteriol 193:2517–2526PubMedCentralPubMedGoogle Scholar
  124. Petersen J, Ludewig AK, Michael V et al (2014) Chromera velia, endosymbioses and the rhodoplex hypothesis – plastid evolution in cryptophytes, alveolates, stramenopiles, and haptophytes (CASH lineages). Genome Biol Evol 6:666–684PubMedCentralPubMedGoogle Scholar
  125. Pittenauer E, Schmid ER, Allmaier G et al (1993) Structural characterization of the cyanelle peptidoglycan of Cyanophora paradoxa by 252Cf plasma desorption mass spectrometry and fast atom bombardment/tandem mass spectrometry. Biol Mass Spectrom 22:524–536PubMedGoogle Scholar
  126. Plancke C, Colleoni C, Deschamps P et al (2008) Pathway of cytosolic starch synthesis in the model glaucophyte Cyanophora paradoxa. Eukaryot Cell 7:247–257PubMedCentralPubMedGoogle Scholar
  127. Porchia AC, Curatti L, Salerno GL (1999) Sucrose metabolism in cyanobacteria: sucrose synthase from Anabaena sp. strain PCC 7119 is remarkably different from the plant enzymes with respect to substrate affinity and amino-terminal sequence. Planta 210:34–40PubMedGoogle Scholar
  128. Preiss J (1984) Bacterial glycogen synthesis and its regulation. Annu Rev Microbiol 38:419–458PubMedGoogle Scholar
  129. Price DC, Chan CX, Yoon HS et al (2012) Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants. Science 335:843–847PubMedGoogle Scholar
  130. Ragan MA, Bird CJ, Rice EL et al (1994) A molecular phylogeny of the marine red algae (Rhodophyta) based on the nuclear small-subunit rRNA gene. Proc Natl Acad Sci U S A 91:7276–7280PubMedCentralPubMedGoogle Scholar
  131. Reyes-Prieto A, Moustafa A, Bhattacharya D (2008) Multiple genes of apparent algal origin suggest ciliates may once have been photosynthetic. Curr Biol 18:956–962PubMedCentralPubMedGoogle Scholar
  132. Rodriguez-Ezpeleta N, Brinkmann H, Burey SC et al (2005) Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. Curr Biol 15:1325–1330PubMedGoogle Scholar
  133. Rogers PV, Luo S, Sucic JF et al (1992) Characterization and cloning of glycogen phosphorylase 1 from Dictyostelium discoideum. Biochim Biophys Acta 1129:262–272PubMedGoogle Scholar
  134. Rogers PV, Sucic JF, Yin Y et al (1994) Disruption of glycogen phosphorylase gene expression in Dictyostelium: evidence for altered glycogen metabolism and developmental coregulation of the gene products. Differentiation 56:1–12PubMedGoogle Scholar
  135. Rutherford CL, Peery RB, Sucic JF et al (1992) Cloning, structural analysis, and expression of the glycogen phosphorylase-2 gene in Dictyostelium. J Biol Chem 267:2294–2302PubMedGoogle Scholar
  136. Sanchez-Baracaldo P, Ridgwell A, Raven JA (2014) A neoproterozoic transition in the marine nitrogen cycle. Curr Biol 24:652–657PubMedGoogle Scholar
  137. Sanchez-Puerta MV, Lippmeier JC, Apt KE et al (2007) Plastid genes in a non-photosynthetic dinoflagellate. Protist 158:105–117PubMedGoogle Scholar
  138. Santos CR, Tonoli CC, Trindade DM et al (2011) Structural basis for branching-enzyme activity of glycoside hydrolase family 57: structure and stability studies of a novel branching enzyme from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. Proteins 79:547–557PubMedGoogle Scholar
  139. Sawada T, Nakamura Y, Ohdan T et al (2014) Diversity of reaction characteristics of glucan branching enzymes and the fine structure of alpha-glucan from various sources. Arch Biochem Biophys 562C:9–21Google Scholar
  140. Schlichting R, Bothe H (1993) The cyanelle (Organelles of a low evolutionary scale) possess a phosphate-translocator and a glucose-carrier in Cyanophora paradoxa. Botanica Acta 106:428–434Google Scholar
  141. Schneegurt MA, Sherman DM, Nayar S et al (1994) Oscillating behavior of carbohydrate granule formation and dinitrogen fixation in the cyanobacterium Cyanothece sp. strain ATCC 51142. J Bacteriol 176:1586–1597PubMedCentralPubMedGoogle Scholar
  142. Schonknecht G, Chen WH, Ternes CM et al (2013) Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote. Science 339:1207–1210PubMedGoogle Scholar
  143. Schwoppe C, Winkler HH, Neuhaus HE (2002) Properties of the glucose-6-phosphate transporter from Chlamydia pneumoniae (HPTcp) and the glucose-6-phosphate sensor from Escherichia coli (UhpC). J Bacteriol 184:2108–2115PubMedCentralPubMedGoogle Scholar
  144. Schwoppe C, Winkler HH, Neuhaus HE (2003) Connection of transport and sensing by UhpC, the sensor for external glucose-6-phosphate in Escherichia coli. Eur J Biochem 270:1450–1457PubMedGoogle Scholar
  145. Serodio J, Cruz S, Cartaxana P et al (2014) Photophysiology of kleptoplasts: photosynthetic use of light by chloroplasts living in animal cells. Philos Trans R Soc Lond B Biol Sci 369:20130242PubMedCentralPubMedGoogle Scholar
  146. Sesma JI, Iglesias AA (1998) Synthesis of floridean starch in the red alga Gracilaria gracilis occurs via ADP-glucose. In: Garab G (ed) Photosynthesis: mechanisms and effects. Kluwer Academic Publishers, Dordrecht, pp 3537–3540Google Scholar
  147. Sheath RG, Hellebust JA, Sawa T (1979) Floridean starch metabolism of Porphyridium purpureum Rhophyta I. Changes during ageing of batch culture. Phycologia 18:292–293Google Scholar
  148. Sheng J, Preiss J (1997) Arginine294 is essential for the inhibition of Anabaena PCC 7120 ADP-glucose pyrophosphorylase by phosphate. Biochemistry 36:13077–13084PubMedGoogle Scholar
  149. Shih PM, Matzke NJ (2013) Primary endosymbiosis events date to the later Proterozoic with cross-calibrated phylogenetic dating of duplicated ATPase proteins. Proc Natl Acad Sci U S A 110:12355–12360PubMedCentralPubMedGoogle Scholar
  150. Shimonaga T, Fujiwara S, Kaneko M et al (2007) Variation in storage alpha-polyglucans of red algae: amylose and semi-amylopectin types in Porphyridium and glycogen type in Cyanidium. Mar Biotechnol (NY) 9:192–202Google Scholar
  151. Shimonaga T, Konishi M, Oyama Y et al (2008) Variation in storage alpha-glucans of the Porphyridiales (Rhodophyta). Plant Cell Physiol 49:103–116PubMedGoogle Scholar
  152. Shoguchi E, Shinzato C, Kawashima T et al (2013) Draft assembly of the Symbiodinium minutum nuclear genome reveals dinoflagellate gene structure. Curr Biol 23:1399–1408PubMedGoogle Scholar
  153. Singh PK (1973) Nitrogen fixation by the unicellular blue-green alga Aphanothece. Arch Mikrobiol 92:59–62Google Scholar
  154. Stadnichuk IN, Semenova LR, Smirnova GP et al (2007) A highly branched storage polyglucan in the thermoacidophilic red microalga Galdieria maxima cells. Prikl Biokhim Mikrobiol 43:88–93PubMedGoogle Scholar
  155. Stegemann S, Hartmann S, Ruf S et al (2003) High-frequency gene transfer from the chloroplast genome to the nucleus. Proc Natl Acad Sci U S A 100:8828–8833PubMedCentralPubMedGoogle Scholar
  156. Steiner JM, Yusa F, Pompe JA et al (2005) Homologous protein import machineries in chloroplasts and cyanelles. Plant J 44:646–652PubMedGoogle Scholar
  157. Streb S, Delatte T, Umhang M et al (2008) Starch granule biosynthesis in Arabidopsis is abolished by removal of all debranching enzymes but restored by the subsequent removal of an endoamylase. Plant Cell 20:3448–3466PubMedCentralPubMedGoogle Scholar
  158. Summons RE, Jahnke LL, Hope JM et al (1999) 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400:554–557PubMedGoogle Scholar
  159. Suzuki E, Umeda K, Nihei S, Moriya K, Ohkawa H, Fujiwara S, Tsuzuki M, Nakamura Y (2007) Role of the GlgX protein in glycogen metabolism of the cyanobacterium, Synechococcus elongatus PCC 7942. Biochim Biophys Acta 1770:763–773PubMedGoogle Scholar
  160. Suzuki E, Ohkawa H, Moriya K et al (2010) Carbohydrate metabolism in mutants of the cyanobacterium Synechococcus elongatus PCC 7942 defective in glycogen synthesis. Appl Environ Microbiol 76:3153–3159PubMedCentralPubMedGoogle Scholar
  161. Suzuki E, Onoda M, Colleoni C et al (2013) Physicochemical variation of cyanobacterial starch, the insoluble alpha-Glucans in cyanobacteria. Plant Cell Physiol 54:465–473PubMedGoogle Scholar
  162. Szydlowski N, Ragel P, Raynaud S et al (2009) Starch granule initiation in Arabidopsis requires the presence of either class IV or class III starch synthases. Plant Cell 21:2443–2457PubMedCentralPubMedGoogle Scholar
  163. Tagliabracci VS, Turnbull J, Wang W et al (2007) Laforin is a glycogen phosphatase, deficiency of which leads to elevated phosphorylation of glycogen in vivo. Proc Natl Acad Sci U S A 104:19262–19266PubMedCentralPubMedGoogle Scholar
  164. Tomos AD, Northcote DH (1978) A protein-glucan intermediate during paramylon synthesis. Biochem J 174:283–290PubMedCentralPubMedGoogle Scholar
  165. Torija MJ, Novo M, Lemassu A et al (2005) Glycogen synthesis in the absence of glycogenin in the yeast Saccharomyces cerevisiae. FEBS Lett 579:3999–4004PubMedGoogle Scholar
  166. Tresse E, Kosta A, Giusti C et al (2008) A UDP-glucose derivative is required for vacuolar autophagic cell death. Autophagy 4:680–691PubMedGoogle Scholar
  167. Tuttle RC, Loeblich AR 3rd (1974) Genetic recombination in the dinoflagellate Crypthecodinium cohnii. Science 185:1061–1062PubMedGoogle Scholar
  168. Tuttle RC, Loeblich AR 3rd (1977) N-methyl-N′-nitro-N-nitrosoguanidine and UV induced mutants of the dinoflagellate Crypthecodinium cohnii. J Protozool 24:313–316PubMedGoogle Scholar
  169. Ugalde JE, Parodi AJ, Ugalde RA (2003) De novo synthesis of bacterial glycogen: Agrobacterium tumefaciens glycogen synthase is involved in glucan initiation and elongation. Proc Natl Acad Sci U S A 100:10659–10663PubMedCentralPubMedGoogle Scholar
  170. Villarejo A, Martinez F, del Pino Plumed M et al (1996) The induction of the CO2 concentrating mechanism in a starch-less mutant of Chlamydomonas reinhardtii. Physiol Plant 98:798–802Google Scholar
  171. Viola R, Nyvall P, Pedersen M (2001) The unique features of starch metabolism in red algae. Proc Biol Sci 268:1417–1422PubMedCentralPubMedGoogle Scholar
  172. Vogel K, Barber AA (1968) Degradation of paramylon by Euglena gracilis. J Protozool 15:657–662PubMedGoogle Scholar
  173. Wattebled F, Buleon A, Bouchet B et al (2002) Granule-bound starch synthase I. A major enzyme involved in the biogenesis of B-crystallites in starch granules. Eur J Biochem 269:3810–3820PubMedGoogle Scholar
  174. Wattebled F, Dong Y, Dumez S et al (2005) Mutants of Arabidopsis lacking a chloroplastic isoamylase accumulate phytoglycogen and an abnormal form of amylopectin. Plant Physiol 138:184–195PubMedCentralPubMedGoogle Scholar
  175. Weber AP, Linka M, Bhattacharya D (2006) Single, ancient origin of a plastid metabolite translocator family in Plantae from an endomembrane-derived ancestor. Eukaryot Cell 5:609–612PubMedCentralPubMedGoogle Scholar
  176. Williams TA, Foster PG, Nye TM et al (2012) A congruent phylogenomic signal places eukaryotes within the Archaea. Proc Biol Sci 279:4870–4879PubMedCentralPubMedGoogle Scholar
  177. Williamson BD, Favis R, Brickey DA et al (1996) Isolation and characterization of glycogen synthase in Dictyostelium discoideum. Dev Genet 19:350–364PubMedGoogle Scholar
  178. Wilson WA, Roach PJ, Montero M et al (2010) Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiol Rev 34:952–985PubMedCentralPubMedGoogle Scholar
  179. Wisecaver JH, Hackett JD (2011) Dinoflagellate genome evolution. Annu Rev Microbiol 65:369–387PubMedGoogle Scholar
  180. Wolf A, Kramer R, Morbach S (2003) Three pathways for trehalose metabolism in Corynebacterium glutamicum ATCC13032 and their significance in response to osmotic stress. Mol Microbiol 49:1119–1134PubMedGoogle Scholar
  181. Wyatt JT, Silvey JK (1969) Nitrogen fixation by gloeocapsa. Science 165:908–909PubMedGoogle Scholar
  182. Xu Y, Guerra LT, Li Z et al (2013) Altered carbohydrate metabolism in glycogen synthase mutants of Synechococcus sp. strain PCC 7002: cell factories for soluble sugars. Metab Eng 16:56–67PubMedGoogle Scholar
  183. Yoo SH, Spalding MH, Jane JL (2002) Characterization of cyanobacterial glycogen isolated from the wild type and from a mutant lacking of branching enzyme. Carbohydr Res 337:2195–2203PubMedGoogle Scholar
  184. Yoo SH, Lee BH, Moon Y et al (2014) Glycogen synthase isoforms in Synechocystis sp. PCC6803: identification of different roles to produce glycogen by targeted mutagenesis. PLoS One 9:e91524PubMedCentralPubMedGoogle Scholar
  185. Yoon HS, Hackett JD, Pinto G et al (2002) The single, ancient origin of chromist plastids. Proc Natl Acad Sci U S A 99:15507–15512PubMedCentralPubMedGoogle Scholar
  186. Yoon HS, Hackett JD, Ciniglia C et al (2004) A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol 21:809–818PubMedGoogle Scholar
  187. Yoon HS, Müller KM, Stheath RG et al (2006) Defining the major lineages of red algae (Rhodophyta). J Phycol 42:482–492Google Scholar
  188. Yoshikawa H, Nagashima M, Morimoto K et al (2003) Freeze-fracture and cytochemical studies on the in vitro cyst form of reptilian Blastocystis pythoni. J Eukaryot Microbiol 50:70–75PubMedGoogle Scholar
  189. Yu S, Pedersen M (1993) Alpha-1,4-glucan lyase, a new class of starch/glycogen-degrading enzyme. II. Subcellular localization and partial amino-acid sequence. Planta 191:137–142PubMedGoogle Scholar
  190. Yu S, Bojsen K, Svensson B et al (1999) alpha-1,4-glucan lyases producing 1,5-anhydro-D-fructose from starch and glycogen have sequence similarity to alpha-glucosidases. Biochim Biophys Acta 1433:1–15PubMedGoogle Scholar
  191. Yu TS, Kofler H, Hausler RE et al (2001) The Arabidopsis sex1 mutant is defective in the R1 protein, a general regulator of starch degradation in plants, and not in the chloroplast hexose transporter. Plant Cell 13:1907–1918PubMedCentralPubMedGoogle Scholar
  192. Zea CJ, Pohl NL (2004) General assay for sugar nucleotidyltransferases using electrospray ionization mass spectrometry. Anal Biochem 328:196–202PubMedGoogle Scholar
  193. Zona R, Chang-Pi-Hin F, O’Donohue MJ et al (2004) Bioinformatics of the glycoside hydrolase family 57 and identification of catalytic residues in amylopullulanase from Thermococcus hydrothermalis. Eur J Biochem 271:2863–2872PubMedGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  • Steven Ball
    • 1
    Email author
  • Christophe Colleoni
    • 1
  • Maria Cecilia Arias
    • 1
  1. 1.Unité de Glycobiologie Structurale et FonctionnelleUMR 8576 CNRS – Université Lille 1Villeneuve d’Ascq CedexFrance

Personalised recommendations