Skip to main content

Abstract

Intensity modulated radiation therapy (IMRT) is an important technologic advance in the contemporary treatment for pediatric and young adolescent patients. Irreversible normal tissue injury is more likely after irradiation of rapidly dividing cells as it occurs during periods of rapid growth, such as puberty. As many of the effects of radiation injury to normal tissues are delayed for many years after exposure, pediatric and young adolescents have longer life spans to express radiation therapy-related effects. IMRT offers the ability to use highly conformal target volumes which strictly limit dose to normal adjacent tissues minimizing some of the serious late sequelae seen with a standard 3-dimensional conformal radiation therapy (3DCRT). Prospective clinical studies which follow patients for years after treatment have confirmed reduction in late effects using conformal IMRT techniques.

In the United States, most children are enrolled on clinical trials conducted through the Children’s Oncology Group (COG) where specific radiation therapy guidelines for dose, target volumes, and prescription of treatment are being refined. Pediatric radiation oncologists have not adopted a set of uniformly treatment parameters, as normal tissue injury is highly dependent on age at the time of radiation therapy. Although IMRT has been demonstrated to reduce the risk for normal tissue injury in children, an important disadvantage to consider is the increased volume of irradiated tissue in the low dose range, potentially increasing the risk for secondary malignancy(s). This chapter will discuss IMRT considerations as they relate to young children and adolescent patients and its application in specific pediatric cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Paulino AC, Skwarchuk M (2002) Intensity-modulated radiation therapy in the treatment of children. Med Dosim 27(2):115–120. doi:10.1016/S0958-3947(02)00093-6. [pii]

    Article  PubMed  Google Scholar 

  2. Teh BS, Mai WY, Grant WH 3rd, Chiu JK, Lu HH, Carpenter LS, Woo SY, Butler EB (2002) Intensity modulated radiotherapy (IMRT) decreases treatment-related morbidity and potentially enhances tumor control. Cancer Investig 20(4):437–451

    Article  Google Scholar 

  3. Schwartz CL (2004) Health status of adult long-term survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. J Pediatr 144(3):407–408

    PubMed  Google Scholar 

  4. Lee EK, Fox T, Crocker I (2006) Simultaneous beam geometry and intensity map optimization in intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 64(1):301–320. doi:10.1016/j.ijrobp.2005.08.023

    Article  PubMed  Google Scholar 

  5. Dhabaan A, Elder E, Schreibmann E, Crocker I, Curran WJ, Oyesiku NM, Shu HK, Fox T (2010) Dosimetric performance of the new high-definition multileaf collimator for intracranial stereotactic radiosurgery. J Appl Clin Med Phys 11(3):3040

    PubMed  Google Scholar 

  6. Otto K (2008) Volumetric modulated arc therapy: IMRT in a single gantry arc. Med Phys 35(1):310–317

    Article  PubMed  Google Scholar 

  7. Tanyi JA, Summers PA, McCracken CL, Chen Y, Ku LC, Fuss M (2009) Implications of a high-definition multileaf collimator (HD-MLC) on treatment planning techniques for stereotactic body radiation therapy (SBRT): a planning study. Radiat Oncol 4:22. doi:10.1186/1748-717X-4-22. [pii]

    Article  PubMed Central  PubMed  Google Scholar 

  8. Sontag M, Merchant T, Burnham B, Shah A, Kun L (1998) Clinical experience with a system for pediatric respiratory gated radiotherapy. Int J Radiat Oncol Biol Phys 42(1 Suppl), p 40

    Google Scholar 

  9. Ahmed RS, Shen S, Ove R, Duan J, Fiveash JB, Russo SM (2007) Intensity modulation with respiratory gating for radiotherapy of the pleural space. Med Dosim 32(1):16–22. doi:10.1016/j.meddos.2006.10.002. S0958-3947(06)00151-8 [pii]

    Article  PubMed  Google Scholar 

  10. Holt A, Van Gestel D, Arends MP, Korevaar EW, Schuring D, Kunze-Busch MC, Louwe RJ, van Vliet-Vroegindeweij C (2013) Multi-institutional comparison of volumetric modulated arc therapy vs. intensity-modulated radiation therapy for head-and-neck cancer: a planning study. Radiat Oncol 8:26. doi:10.1186/1748-717X-8-26. 1748-717X-8-26 [pii]

  11. Thomas EM, Popple RA, Prendergast BM, Clark GM, Dobelbower MC, Fiveash JB (2013) Effects of flattening filter-free and volumetric-modulated arc therapy delivery on treatment efficiency. J Appl Clin Med Phys 14(6):4328. doi:10.1120/jacmp.v14i6.4328

    PubMed  Google Scholar 

  12. Penagaricano JA, Papanikolaou N, Yan Y, Ratanatharathorn V (2004) Application of intensity-modulated radiation therapy for pediatric malignancies. Medical Dosim 29(4):247–253. doi:10.1016/j.meddos.2004.04.007

    Article  Google Scholar 

  13. Bhatnagar A, Deutsch M (2006) The Role for intensity modulated radiation therapy (IMRT) in pediatric population. Technol Cancer Res Treat 5(6):591–595

    Article  PubMed  Google Scholar 

  14. Sterzing F, Stoiber EM, Nill S, Bauer H, Huber P, Debus J, Munter MW (2009) Intensity modulated radiotherapy (IMRT) in the treatment of children and adolescents–a single institution’s experience and a review of the literature. Radiat Oncol 4:37. doi:10.1186/1748-717x-4-37

    Article  PubMed Central  PubMed  Google Scholar 

  15. Abou-Elenein HS, Attalla EM, Ammar H, Eldesoky I, Farouk M, Shoer S (2013) The impact of intensity modulated radiotherapy on the skin dose for deep seated tumors. Chin-Ger J Clin Oncol 12(4):194–198. doi:10.1007/s10330-012-1127-1

    Article  CAS  Google Scholar 

  16. Kry SF (2010) Non-target dose from radiotherapy: magnitude, evaluation, and impact. American Association of Medical Physicists, College Park, MD

    Google Scholar 

  17. Kaderka R, Schardt D, Durante M, Berger T, Ramm U, Licher J, La Tessa C (2012) Out-of-field dose measurements in a water phantom using different radiotherapy modalities. Phys Med Biol 57(16):5059–5074. doi:10.1088/0031-9155/57/16/5059

    Article  CAS  PubMed  Google Scholar 

  18. Klein EE, Maserang B, Wood R, Mansur D (2006) Peripheral doses from pediatric IMRT. Med Phys 33(7):2525. doi:10.1118/1.2207252

    Article  PubMed  Google Scholar 

  19. Hall EJ, Wuu CS (2003) Radiation-induced second cancers: the impact of 3D-CRT and IMRT. Int J Radiat Oncol Biol Phys 56(1):83–88. doi:10.1016/S0360301603000737 [pii]

  20. Followill D, Geis P, Boyer A (1997) Estimates of whole-body dose equivalent produced by beam intensity modulated conformal therapy. Int J Radiat Oncol Biol Phys 38(3):667–672. doi:10.1016/S0360301697000126 [pii]

  21. Jain N, Krull KR, Brouwers P, Chintagumpala MM, Woo SY (2008) Neuropsychological outcome following intensity-modulated radiation therapy for pediatric medulloblastoma. Pediatr Blood Cancer 51(2):275–279. doi:10.1002/pbc.21580

    Article  PubMed  Google Scholar 

  22. Lin SH, Wang L, Myles B, Thall PF, Hofstetter WL, Swisher SG, Ajani JA, Cox JD, Komaki R, Liao Z (2012) Propensity score-based comparison of long-term outcomes with 3-dimensional conformal radiotherapy vs intensity-modulated radiotherapy for esophageal cancer. Int J Radiat Oncol Biol Phys 84(5):1078–1085. doi:10.1016/j.ijrobp.2012.02.015. S0360-3016(12)00227-1 [pii]

  23. Schwartz CL (1999) Long-term survivors of childhood cancer: the late effects of therapy. Oncologist 4(1):45–54

    CAS  PubMed  Google Scholar 

  24. Hudson MM, Mertens AC, Yasui Y, Hobbie W, Chen H, Gurney JG, Yeazel M, Recklitis CJ, Marina N, Robison LR, Oeffinger KC (2003) Health status of adult long-term survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. JAMA 290(12):1583–1592. doi:10.1001/jama.290.12.1583. 290/12/1583 [pii]

  25. Wallace WH, Anderson RA, Irvine DS (2005) Fertility preservation for young patients with cancer: who is at risk and what can be offered? Lancet Oncol 6(4):209–218. doi:10.1016/S1470-2045(05)70092-9 [pii]

  26. Moskowitz CS, Chou JF, Wolden SL, Bernstein JL, Malhotra J, Friedman DN, Mubdi NZ, Leisenring WM, Stovall M, Hammond S, Smith SA, Henderson TO, Boice JD, Hudson MM, Diller LR, Bhatia S, Kenney LB, Neglia JP, Begg CB, Robison LL, Oeffinger KC (2014) Breast cancer after chest radiation therapy for childhood cancer. J Clin Oncol. doi:10.1200/JCO.2013.54.4601 [pii]

  27. Koshy M, Paulino AC, Marcus RB Jr, Ting JY, Whitaker D, Davis LW (2004) Extra-target doses in children receiving multileaf collimator (MLC) based intensity modulated radiation therapy (IMRT). Pediatr Blood Cancer 42(7):626–630. doi:10.1002/pbc.20030

    Article  PubMed  Google Scholar 

  28. Mansur DB, Klein EE, Maserang BP (2007) Measured peripheral dose in pediatric radiation therapy: a comparison of intensity-modulated and conformal techniques. Radiother Oncol 82(2):179–184. doi:10.1016/j.radonc.2007.01.002

    Article  PubMed  Google Scholar 

  29. Kan MW, Leung LH, Kwong DL, Wong W, Lam N (2010) Peripheral doses from noncoplanar IMRT for pediatric radiation therapy. Medical Dosim 35(4):255–263. doi:10.1016/j.meddos.2009.07.003

    Article  Google Scholar 

  30. Cashmore J, Ramtohul M, Ford D (2011) Lowering whole-body radiation doses in pediatric intensity-modulated radiotherapy through the use of unflattened photon beams. Int J Radiat Oncol Biol Phys 80(4):1220–1227. doi:10.1016/j.ijrobp.2010.10.002

    Article  PubMed  Google Scholar 

  31. Jia MX, Zhang X, Yin C, Feng G, Li N, Gao S, Liu da W (2014) Peripheral dose measurements in cervical cancer radiotherapy: a comparison of volumetric modulated arc therapy and step-and-shoot IMRT techniques. Radiat Oncol 9:61. doi:10.1186/1748-717X-9-61. 1748-717X-9-61 [pii]

  32. Matuszak MM, Yan D, Grills I, Martinez A (2010) Clinical applications of volumetric modulated arc therapy. Int J Radiat Oncol Biol Phys 77(2):608–616. doi:10.1016/j.ijrobp.2009.08.032

    Article  PubMed  Google Scholar 

  33. Eldesoky I, Attalla EM, Elshemey WM, Zaghloul MS (2012) A comparison of three commercial IMRT treatment planning systems for selected paediatric cases. J Appl Clin Med Phys 13(2):3742. doi:10.1120/jacmp.v13i2.3742

    PubMed  Google Scholar 

  34. Dogan N, King S, Emami B, Mohideen N, Mirkovic N, Leybovich LB, Sethi A (2003) Assessment of different IMRT boost delivery methods on target coverage and normal-tissue sparing. Int J Radiat Oncol Biol Phys 57(5):1480–1491. doi:10.1016/S0360301603015694 [pii]

  35. Yang JC, Wexler LH, Meyers PA, Happersett L, La Quaglia MP, Wolden SL (2013) Intensity-modulated radiation therapy with dose-painting for pediatric sarcomas with pulmonary metastases. Pediatr Blood Cancer 60(10):1616–1620. doi:10.1002/pbc.24502

    Article  PubMed  Google Scholar 

  36. Walter C, Boda-Heggemann J, Wertz H, Loeb I, Rahn A, Lohr F, Wenz F (2007) Phantom and in-vivo measurements of dose exposure by image-guided radiotherapy (IGRT): MV portal images vs. kV portal images vs. cone-beam CT. Radiother Oncol 85(3):418–423. doi:10.1016/j.radonc.2007.10.014. S0167-8140(07)00527-0 [pii]

  37. Deng J, Chen Z, Roberts KB, Nath R (2012) Kilovoltage imaging doses in the radiotherapy of pediatric cancer patients. Int J Radiat Oncol Biol Phys 82(5):1680–1688. doi:10.1016/j.ijrobp.2011.01.062. S0360-3016(11)00237-9 [pii]

  38. King CR, Maxim PG, Hsu A, Kapp DS (2010) Incidental testicular irradiation from prostate IMRT: it all adds up. Int J Radiat Oncol Biol Phys 77(2):484–489. doi:10.1016/j.ijrobp.2009.04.083. S0360-3016(09)00723-8 [pii]

  39. Deng J, Chen Z, Yu JB, Roberts KB, Peschel RE, Nath R (2012) Testicular doses in image-guided radiotherapy of prostate cancer. Int J Radiat Oncol Biol Phys 82 (1):e39–e47. doi:10.1016/j.ijrobp.2011.01.071. S0360-3016(11)00262-8 [pii]

  40. Merchant TE, Farr JB (2014) Proton beam therapy: a fad or a new standard of care. Curr Opin Pediatr 26(1):3–8. doi:10.1097/MOP.0000000000000048

    Article  CAS  PubMed  Google Scholar 

  41. Smith AR (2009) Vision 20/20: proton therapy. Med Phys 36(2):556–568

    Article  CAS  PubMed  Google Scholar 

  42. Athar BS, Paganetti H (2011) Comparison of second cancer risk due to out-of-field doses from 6-MV IMRT and proton therapy based on 6 pediatric patient treatment plans. Radiother Oncol 98(1):87–92. doi:10.1016/j.radonc.2010.11.003

    Article  PubMed Central  PubMed  Google Scholar 

  43. Paganetti H, Athar BS, Moteabbed M, Adams JA, Schneider U, Yock TI (2012) Assessment of radiation-induced second cancer risks in proton therapy and IMRT for organs inside the primary radiation field. Phys Med Biol 57(19):6047–6061. doi:10.1088/0031-9155/57/19/6047

    Article  PubMed  Google Scholar 

  44. Daw NC, Mahajan A (2013) Photons or protons for non-central nervous system solid malignancies in children. In: American Society of Clinical Oncology educational book/ASCO American Society of Clinical Oncology meeting, pp 354–359. doi:10.1200/EdBook_AM.2013.33.e354

  45. Greco C, Wolden S (2007) Current status of radiotherapy with proton and light ion beams. Cancer 109(7):1227–1238. doi:10.1002/cncr.22542

    Article  PubMed  Google Scholar 

  46. Lomax AJ, Bohringer T, Bolsi A, Coray D, Emert F, Goitein G, Jermann M, Lin S, Pedroni E, Rutz H, Stadelmann O, Timmermann B, Verwey J, Weber DC (2004) Treatment planning and verification of proton therapy using spot scanning: initial experiences. Med Phys 31(11):3150–3157

    Article  PubMed  Google Scholar 

  47. Paganetti H (1998) Calculation of the spatial variation of relative biological effectiveness in a therapeutic proton field for eye treatment. Phys Med Biol 43(8):2147–2157

    Article  CAS  PubMed  Google Scholar 

  48. Paganetti H (2012) Range uncertainties in proton therapy and the role of Monte Carlo simulations. Phys Med Biol 57(11):R99–R117. doi:10.1088/0031-9155/57/11/R99

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Chen Y, Ahmad S (2009) Evaluation of inelastic hadronic processes for 250 MeV proton interactions in tissue and iron using GEANT4. Radiat Prot Dosim 136(1):11–16. doi:10.1093/rpd/ncp149. ncp149 [pii]

  50. Yan X, Titt U, Koehler AM, Newhauser WD (2002) Measurement of neutron dose equivalent to proton therapy patients outside of the proton radiation field. Nucl Instrum Methods Phys Res Sect A 476(1–2):429–434. http://dx.doi.org/10.1016/S0168-9002(01)01483-8

  51. Gerber NU, Mynarek M, von Hoff K, Friedrich C, Resch A, Rutkowski S (2014) Recent developments and current concepts in medulloblastoma. Cancer Treat Rev 40(3):356–365. doi:10.1016/j.ctrv.2013.11.010. S0305-7372(13)00263-6 [pii]

  52. Packer RJ, Gajjar A, Vezina G, Rorke-Adams L, Burger PC, Robertson PL, Bayer L, LaFond D, Donahue BR, Marymont MH, Muraszko K, Langston J, Sposto R (2006) Phase III study of craniospinal radiation therapy followed by adjuvant chemotherapy for newly diagnosed average-risk medulloblastoma. J Clin Oncol 24(25):4202–4208. doi:10.1200/JCO.2006.06.4980. 24/25/4202 [pii]

  53. Mulhern RK, Merchant TE, Gajjar A, Reddick WE, Kun LE (2004) Late neurocognitive sequelae in survivors of brain tumours in childhood. Lancet Oncol 5(7):399–408. doi:10.1016/S1470-2045(04)01507-4. S1470204504015074 [pii]

  54. Pichandi A, Ganesh KM, Jerrin A, Balaji K, Sridhar PS, Surega A (2014) Cranio spinal irradiation of medulloblastoma using high precision techniques – a dosimetric comparison. Technol Cancer Res Treat. doi:10.7785/tcrt.2012.500421

    Google Scholar 

  55. Lee YK, Brooks CJ, Bedford JL, Warrington AP, Saran FH (2012) Development and evaluation of multiple isocentric volumetric modulated arc therapy technique for craniospinal axis radiotherapy planning. Int J Radiat Oncol Biol Phys 82(2):1006–1012. doi:10.1016/j.ijrobp.2010.12.033. S0360-3016(11)00021-6 [pii]

  56. Fogliata A, Bergstrom S, Cafaro I, Clivio A, Cozzi L, Dipasquale G, Hallstrom P, Mancosu P, Navarria P, Nicolini G, Parietti E, Pesce GA, Richetti A, Scorsetti M, Vanetti E, Weber DC (2011) Cranio-spinal irradiation with volumetric modulated arc therapy: a multi-institutional treatment experience. Radiother Oncol 99(1):79–85. doi:10.1016/j.radonc.2011.01.023. S0167-8140(11)00071-5 [pii]

  57. Brodin NP, Vogelius IR, Bjork-Eriksson T, Munck Af Rosenschold P, Maraldo MV, Aznar MC, Specht L, Bentzen SM (2014) Optimizing the radiation therapy dose prescription for pediatric medulloblastoma: minimizing the life years lost attributable to failure to control the disease and late complication risk. Acta Oncol 53(4):462–470. doi:10.3109/0284186X.2013.858824

    Article  CAS  PubMed  Google Scholar 

  58. Beltran C, Gray J, Merchant TE (2012) Intensity-modulated arc therapy for pediatric posterior fossa tumors. Int J Radiat Oncol Biol Phys 82(2):e299–e304. doi:10.1016/j.ijrobp.2010.11.024. S0360-3016(10)03573-X [pii]

  59. Anchineyan P, Mani GK, Amalraj J, Karthik B, Anbumani S (2014) Use of flattening filter-free photon beams in treating medulloblastoma: a dosimetric evaluation. ISRN Oncol 2014:769698. doi:10.1155/2014/769698

    PubMed Central  PubMed  Google Scholar 

  60. Beltran C, Gray J, Merchant TE (2012) Intensity-modulated arc therapy for pediatric posterior fossa tumors. Int J Radiat Oncol Biol Phys 82(2):e299–e304. doi:10.1016/j.ijrobp.2010.11.024

    Article  PubMed  Google Scholar 

  61. Huang E, Teh BS, Strother DR, Davis QG, Chiu JK, Lu HH, Carpenter LS, Mai WY, Chintagumpala MM, South M, Grant WH 3rd, Butler EB, Woo SY (2002) Intensity-modulated radiation therapy for pediatric medulloblastoma: early report on the reduction of ototoxicity. Int J Radiat Oncol Biol Phys 52(3):599–605

    Article  PubMed  Google Scholar 

  62. Paulino AC, Lobo M, Teh BS, Okcu MF, South M, Butler EB, Su J, Chintagumpala M (2010) Ototoxicity after intensity-modulated radiation therapy and cisplatin-based chemotherapy in children with medulloblastoma. Int J Radiat Oncol Biol Phys 78(5):1445–1450. doi:10.1016/j.ijrobp.2009.09.031

    Article  CAS  PubMed  Google Scholar 

  63. Hua C, Bass JK, Khan R, Kun LE, Merchant TE (2008) Hearing loss after radiotherapy for pediatric brain tumors: effect of cochlear dose. Int J Radiat Oncol Biol Phys 72(3):892–899. doi:10.1016/j.ijrobp.2008.01.050. S0360-3016(08)00229-0 [pii]

  64. Merchant TE, Pollack IF, Loeffler JS (2010) Brain tumors across the age spectrum: biology, therapy, and late effects. Semin Radiat Oncol 20(1):58–66. doi:10.1016/j.semradonc.2009.09.005. S1053-4296(09)00066-6 [pii]

  65. Palmer SL, Armstrong C, Onar-Thomas A, Wu S, Wallace D, Bonner MJ, Schreiber J, Swain M, Chapieski L, Mabbott D, Knight S, Boyle R, Gajjar A (2013) Processing speed, attention, and working memory after treatment for medulloblastoma: an international, prospective, and longitudinal study. J Clin Oncol 31 (28):3494–3500. doi:10.1200/JCO.2012.47.4775. JCO.2012.47.4775 [pii]

  66. Polkinghorn WR, Dunkel IJ, Souweidane MM, Khakoo Y, Lyden DC, Gilheeney SW, Becher OJ, Budnick AS, Wolden SL (2011) Disease control and ototoxicity using intensity-modulated radiation therapy tumor-bed boost for medulloblastoma. Int J Radiat Oncol Biol Phys 81(3):e15–e20. doi:10.1016/j.ijrobp.2010.11.081. S0360-3016(11)00133-7 [pii]

  67. Rola R, Raber J, Rizk A, Otsuka S, VandenBerg SR, Morhardt DR, Fike JR (2004) Radiation-induced impairment of hippocampal neurogenesis is associated with cognitive deficits in young mice. Exp Neurol 188(2):316–330. doi:10.1016/j.expneurol.2004.05.005. S0014488604001748 [pii]

  68. Redmond KJ, Mahone EM, Terezakis S, Ishaq O, Ford E, McNutt T, Kleinberg L, Cohen KJ, Wharam M, Horska A (2013) Association between radiation dose to neuronal progenitor cell niches and temporal lobes and performance on neuropsychological testing in children: a prospective study. Neuro-Oncol 15(3):360–369. doi:10.1093/neuonc/nos303. nos303 [pii]

  69. Awad R, Fogarty G, Hong A, Kelly P, Ng D, Santos D, Haydu L (2013) Hippocampal avoidance with volumetric modulated arc therapy in melanoma brain metastases – the first Australian experience. Radiat Oncol 8:62. doi:10.1186/1748-717X-8-62. 1748-717X-8-62 [pii]

  70. Brodin NP, Munck Af Rosenschold P, Blomstrand M, Kiil-Berthlesen A, Hollensen C, Vogelius IR, Lannering B, Bentzen SM, Bjork-Eriksson T (2014) Hippocampal sparing radiotherapy for pediatric medulloblastoma: impact of treatment margins and treatment technique. Neuro-Oncol 16 (4):594–602. doi:10.1093/neuonc/not225. not225 [pii]

  71. Han G, Liu D, Gan H, Denniston KA, Li S, Tan W, Hu D, Zhen W, Wang Z (2014) Evaluation of the dosimetric feasibility of hippocampal sparing intensity-modulated radiotherapy in patients with locally advanced nasopharyngeal carcinoma. PLoS One 9(2):e90007. doi:10.1371/journal.pone.0090007. PONE-D-13-52010 [pii]

  72. Oskan F, Ganswindt U, Schwarz SB, Manapov F, Belka C, Niyazi M (2014) Hippocampus sparing in whole-brain radiotherapy. A review. Strahlenther Onkol 190(4):337–341. doi:10.1007/s00066-013-0518-8

    Article  CAS  PubMed  Google Scholar 

  73. Gondi V, Tome WA, Mehta MP (2010) Why avoid the hippocampus? A comprehensive review. Radiother Oncol 97(3):370–376. doi:10.1016/j.radonc.2010.09.013

    Article  PubMed Central  PubMed  Google Scholar 

  74. Gondi V, Tolakanahalli R, Mehta MP, Tewatia D, Rowley H, Kuo JS, Khuntia D, Tome WA (2010) Hippocampal-sparing whole-brain radiotherapy: a “how-to” technique using helical tomotherapy and linear accelerator-based intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 78(4):1244–1252. doi:10.1016/j.ijrobp.2010.01.039

    Article  PubMed Central  PubMed  Google Scholar 

  75. Muscal JA, Jones JY, Paulino AC, Bertuch AA, Su J, Woo SY, Mahoney DH Jr, Chintagumpala M (2009) Changes mimicking new leptomeningeal disease after intensity-modulated radiotherapy for medulloblastoma. Int J Radiat Oncol Biol Phys 73(1):214–221. doi:10.1016/j.ijrobp.2008.03.056

    Article  PubMed Central  PubMed  Google Scholar 

  76. Merchant TE, Kun LE, Wu S, Xiong X, Sanford RA, Boop FA (2009) Phase II trial of conformal radiation therapy for pediatric low-grade glioma. J Clin Oncol 27 (22):3598–3604. doi:10.1200/JCO.2008.20.9494. JCO.2008.20.9494 [pii]

  77. Paulino AC, Mazloom A, Terashima K, Su J, Adesina AM, Okcu MF, Teh BS, Chintagumpala M (2013) Intensity-modulated radiotherapy (IMRT) in pediatric low-grade glioma. Cancer 119(14):2654–2659. doi:10.1002/cncr.28118

    Article  PubMed  Google Scholar 

  78. Bunin GR, Surawicz TS, Witman PA, Preston-Martin S, Davis F, Bruner JM (1998) The descriptive epidemiology of craniopharyngioma. J Neurosurg 89 (4):547–551. doi:10.3171/jns.1998.89.4.0547

  79. Fernandez-Miranda JC, Gardner PA, Snyderman CH, Devaney KO, Strojan P, Suarez C, Genden EM, Rinaldo A, Ferlito A (2012) Craniopharyngioma: a pathologic, clinical, and surgical review. Head Neck 34(7):1036–1044. doi:10.1002/hed.21771

    Article  PubMed  Google Scholar 

  80. Minniti G, Esposito V, Amichetti M, Enrici RM (2009) The role of fractionated radiotherapy and radiosurgery in the management of patients with craniopharyngioma. Neurosurg Rev 32(2):125–132. doi:10.1007/s10143-009-0186-4. discussion 132

    Article  CAS  PubMed  Google Scholar 

  81. Merchant TE, Kun LE, Hua CH, Wu S, Xiong X, Sanford RA, Boop FA (2013) Disease control after reduced volume conformal and intensity modulated radiation therapy for childhood craniopharyngioma. Int J Radiat Oncol Biol Phys 85(4):e187–e192. doi:10.1016/j.ijrobp.2012.10.030. S0360-3016(12)03729-7 [pii]

  82. Beltran C, Naik M, Merchant TE (2010) Dosimetric effect of target expansion and setup uncertainty during radiation therapy in pediatric craniopharyngioma. Radiother Oncol 97(3):399–403. doi:10.1016/j.radonc.2010.10.017

    Article  PubMed  Google Scholar 

  83. Merchant TE, Chitti RM, Li C, Xiong X, Sanford RA, Khan RB (2010) Factors associated with neurological recovery of brainstem function following postoperative conformal radiation therapy for infratentorial ependymoma. Int J Radiat Oncol Biol Phys 76(2):496–503. doi:10.1016/j.ijrobp.2009.01.079. S0360-3016(09)00342-3 [pii]

  84. Merchant TE, Fouladi M (2005) Ependymoma: new therapeutic approaches including radiation and chemotherapy. J Neuro-Oncol 75(3):287–299. doi:10.1007/s11060-005-6753-9

    Article  Google Scholar 

  85. Landau E, Boop FA, Conklin HM, Wu S, Xiong X, Merchant TE (2013) Supratentorial ependymoma: disease control, complications, and functional outcomes after irradiation. Int J Radiat Oncol Biol Phys 85 (4):e193–e199. doi:10.1016/j.ijrobp.2012.10.033. S0360-3016(12)03733-9 [pii]

  86. Beltran C, Naik M, Merchant TE (2010) Dosimetric effect of setup motion and target volume margin reduction in pediatric ependymoma. Radiother Oncol 96(2):216–222. doi:10.1016/j.radonc.2010.02.031. S0167-8140(10)00167-2 [pii]

  87. Merchant TE, Rose SR, Bosley C, Wu S, Xiong X, Lustig RH (2011) Growth hormone secretion after conformal radiation therapy in pediatric patients with localized brain tumors. J Clin Oncol 29 (36):4776–4780. doi:10.1200/JCO.2011.37.9453. JCO.2011.37.9453 [pii]

  88. Elson A, Bovi J, Kaur K, Maas D, Sinson G, Schultz C (2014) Effect of treatment modality on the hypothalamic-pituitary function of patients treated with radiation therapy for pituitary adenomas: hypothalamic dose and endocrine outcomes. Front Oncol 4:73. doi:10.3389/fonc.2014.00073

    Article  PubMed Central  PubMed  Google Scholar 

  89. Calaminus G, Kortmann R, Worch J, Nicholson JC, Alapetite C, Garre ML, Patte C, Ricardi U, Saran F, Frappaz D (2013) SIOP CNS GCT 96: final report of outcome of a prospective, multinational nonrandomized trial for children and adults with intracranial germinoma, comparing craniospinal irradiation alone with chemotherapy followed by focal primary site irradiation for patients with localized disease. Neuro-Oncol 15 (6):788–796. doi:10.1093/neuonc/not019. not019 [pii]

  90. Sakanaka K, Mizowaki T, Hiraoka M (2012) Dosimetric advantage of intensity-modulated radiotherapy for whole ventricles in the treatment of localized intracranial germinoma. Int J Radiat Oncol Biol Phys 82(2):e273–e280. doi:10.1016/j.ijrobp.2011.04.007. S0360-3016(11)00521-9 [pii]

  91. Sakanaka K, Mizowaki T, Sato S, Ogura K, Hiraoka M (2013) Volumetric-modulated arc therapy vs conventional fixed-field intensity-modulated radiotherapy in a whole-ventricular irradiation: a planning comparison study. Med Dosim 38(2):204–208. doi:10.1016/j.meddos.2013.01.004. S0958-3947(13)00006-X [pii]

  92. Calaminus G, Bamberg M, Jurgens H, Kortmann RD, Sorensen N, Wiestler OD, Gobel U (2004) Impact of surgery, chemotherapy and irradiation on long term outcome of intracranial malignant non-germinomatous germ cell tumors: results of the German Cooperative Trial MAKEI 89. Klin Padiatr 216(3):141–149. doi:10.1055/s-2004-822626

    Article  CAS  PubMed  Google Scholar 

  93. Million L, Donaldson SS (2012) Resectable pediatric nonrhabdomyosarcoma soft tissue sarcoma: which patients benefit from adjuvant radiation therapy and how much? ISRN Oncol 2012:341408. doi:10.5402/2012/341408

    PubMed Central  PubMed  Google Scholar 

  94. Lin C, Donaldson SS, Meza JL, Anderson JR, Lyden ER, Brown CK, Morano K, Laurie F, Arndt CA, Enke CA, Breneman JC (2012) Effect of radiotherapy techniques (IMRT vs. 3D-CRT) on outcome in patients with intermediate-risk rhabdomyosarcoma enrolled in COG D980-- report from the Children’s Oncology Group. Int J Radiat Oncol Biol Phys 82(5):1764–1770. doi:10.1016/j.ijrobp.2011.01.036. S0360-3016(11)00203-3 [pii]

  95. McDonald MW, Esiashvili N, George BA, Katzenstein HM, Olson TA, Rapkin LB, Marcus RB, Jr. (2008) Intensity-modulated radiotherapy with use of cone-down boost for pediatric head-and-neck rhabdomyosarcoma. Int J Radiat Oncol Biol Phys 72(3):884–891. doi:10.1016/j.ijrobp.2008.01.058. S0360-3016(08)00319-2 [pii]

  96. Spunt SL, Million L, Anderson JR et al Risk-based treatment for nonrhabdomyosarcoma soft tissue sarcomas (NRSTS) in patients under 30 years of age: Children’s Oncology Group study ARST0332. In: Abstracts of the 2014 American Society of Clinical Oncology annual meeting, Chicago, 30 May–3 June, 2014

    Google Scholar 

  97. Krasin MJ, Davidoff AM, Xiong X, Wu S, Hua CH, Navid F, Rodriguez-Galindo C, Rao BN, Hoth KA, Neel MD, Merchant TE, Kun LE, Spunt SL (2010) Preliminary results from a prospective study using limited margin radiotherapy in pediatric and young adult patients with high-grade nonrhabdomyosarcoma soft-tissue sarcoma. Int J Radiat Oncol Biol Phys 76(3):874–878. doi:10.1016/j.ijrobp.2009.02.074. S0360-3016(09)00503-3 [pii]

  98. Popple RA, Prellop PB, Spencer SA, De Los Santos JF, Duan J, Fiveash JB, Brezovich IA (2005) Simultaneous optimization of sequential IMRT plans. Med Phys 32(11):3257–3266

    Article  PubMed  Google Scholar 

  99. Roeder F, Schulz-Ertner D, Nikoghosyan AV, Huber PE, Edler L, Habl G, Krempien R, Oertel S, Saleh-Ebrahimi L, Hensley FW, Buechler MW, Debus J, Koch M, Weitz J, Bischof M (2012) A clinical phase I/II trial to investigate preoperative dose-escalated intensity-modulated radiation therapy (IMRT) and intraoperative radiation therapy (IORT) in patients with retroperitoneal soft tissue sarcoma. BMC Cancer 12:287. doi:10.1186/1471-2407-12-287. 1471-2407-12-287 [pii]

  100. Pinnix CC, Fontanilla HP, Hayes-Jordan A, Subbiah V, Bilton SD, Chang EL, Grosshans DR, McAleer MF, Sulman EP, Woo SY, Anderson P, Green HL, Mahajan A (2012) Whole abdominopelvic intensity-modulated radiation therapy for desmoplastic small round cell tumor after surgery. Int J Radiat Oncol Biol Phys 83(1):317–326. doi:10.1016/j.ijrobp.2011.06.1985. S0360-3016(11)02915-4 [pii]

  101. O’Sullivan B, Griffin AM, Dickie CI, Sharpe MB, Chung PW, Catton CN, Ferguson PC, Wunder JS, Deheshi BM, White LM, Kandel RA, Jaffray DA, Bell RS (2013) Phase 2 study of preoperative image-guided intensity-modulated radiation therapy to reduce wound and combined modality morbidities in lower extremity soft tissue sarcoma. Cancer 119(10):1878–1884. doi:10.1002/cncr.27951

    Article  PubMed  Google Scholar 

  102. Stewart AJ, Lee YK, Saran FH (2009) Comparison of conventional radiotherapy and intensity-modulated radiotherapy for post-operative radiotherapy for primary extremity soft tissue sarcoma. Radiother Oncol 93 (1):125–130. doi:10.1016/j.radonc.2009.06.010. S0167-8140(09)00322-3 [pii]

  103. Hu S, Xu X, Xu J, Xu Q, Liu S (2013) Prognostic factors and long-term outcomes of nasopharyngeal carcinoma in children and adolescents. Pediatr Blood Cancer 60(7):1122–1127. doi:10.1002/pbc.24458

    Article  PubMed  Google Scholar 

  104. Tao CJ, Liu X, Tang LL, Mao YP, Chen L, Li WF, Yu XL, Liu LZ, Zhang R, Lin AH, Ma J, Sun Y (2013) Long-term outcome and late toxicities of simultaneous integrated boost-intensity modulated radiotherapy in pediatric and adolescent nasopharyngeal carcinoma. Chin J Cancer 32(10):525–532. doi:10.5732/cjc.013.10124. cjc.013.10124 [pii]

  105. Louis CU, Paulino AC, Gottschalk S, Bertuch AA, Chintagumpala M, Heslop HE, Russell HV (2007) A single institution experience with pediatric nasopharyngeal carcinoma: high incidence of toxicity associated with platinum-based chemotherapy plus IMRT. J Pediatr Hematol Oncol 29(7):500–505. doi:10.1097/MPH.0b013e3180959af4. 00043426-200707000-00013 [pii]

  106. Maris JM (2010) Recent advances in neuroblastoma. N Engl J Med 362(23):2202–2211. doi:10.1056/NEJMra0804577. 362/23/2202 [pii]

  107. Pai Panandiker AS, Beltran C, Billups CA, McGregor LM, Furman WL, Davidoff AM (2013) Intensity modulated radiation therapy provides excellent local control in high-risk abdominal neuroblastoma. Pediatr Blood Cancer 60(5):761–765. doi:10.1002/pbc.24350

    Article  PubMed  Google Scholar 

  108. Nazmy MS, Khafaga Y (2012) Clinical experience in pediatric neuroblastoma intensity modulated radiotherapy. J Egypt Natl Cancer Inst 24(4):185–189. doi:10.1016/j.jnci.2012.10.001

    Article  Google Scholar 

  109. Pai Panandiker AS, Beltran C, Gray J, Hua C (2013) Methods for image guided and intensity modulated radiation therapy in high-risk abdominal neuroblastoma. Pract Radiat Oncol 3(2):107–114

    Article  PubMed Central  PubMed  Google Scholar 

  110. Beltran C, Pai Panandiker AS, Krasin MJ, Merchant TE (2010) Daily image-guided localization for neuroblastoma. J Appl Clin Med Phys 11(4):3388

    PubMed  Google Scholar 

  111. Cotton CA, Peterson S, Norkool PA, Takashima J, Grigoriev Y, Green DM, Breslow NE (2009) Early and late mortality after diagnosis of Wilms’ tumor. J Clin Oncol 27(8):1304–1309. doi:10.1200/JCO.2008.18.6981. JCO.2008.18.6981 [pii]

  112. Kalapurakal JA, Zhang Y, Kepka A, Zawislak B, Sathiaseelan V, Rigsby C, Gopalakrishnan M (2013) Cardiac-sparing whole lung IMRT in children with lung metastasis. Int J Radiat Oncol Biol Phys 85(3):761–767. doi:10.1016/j.ijrobp.2012.05.036. S0360-3016(12)00752-3 [pii]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynn Million M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Million, L., Axente, M. (2015). Pediatric Cancers. In: Nishimura, Y., Komaki, R. (eds) Intensity-Modulated Radiation Therapy. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55486-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55486-8_22

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55485-1

  • Online ISBN: 978-4-431-55486-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics