Skip to main content

Abstract

Although the goals of intensity-modulated radiation therapy (IMRT) are the same as those of conventional treatments (maximize dose to target structures while minimizing dose to nearby normal tissues), some significant differences are present in the treatment planning and delivery processes. Here, we describe these differences and introduce considerations related to beam configurations, treatment plan objectives, and alternative approaches. Also described are some aspects of quality assurance (QA) that are specific to IMRT implementation (e.g., commissioning, patient-specific QA, and process QA) and potential unanticipated consequences of IMRT that must be addressed if IMRT is to be successfully used in the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahunbay EE, Chen GP, Thatcher S, Jursinic PA, White J, Albano K, Li XA (2007) Direct aperture optimization-based intensity-modulated radiotherapy for whole breast irradiation. Int J Radiat Oncol Biol Phys 67(4):1248–1258

    Article  PubMed  Google Scholar 

  2. Allen AM, Czerminska M, Jänne PA, Sugarbaker DJ, Bueno R, Harris JR, Court L, Baldini EH (2006) Fatal pneumonitis associated with intensity-modulated radiation therapy for mesothelioma. Int J Radiat Oncol Biol Phys 65(3):640–645

    Article  PubMed  Google Scholar 

  3. Basran PS, Woo MK (2008) An analysis of tolerance levels in IMRT quality assurance procedures. Med Phys 35(6):2300–2307

    Article  PubMed  Google Scholar 

  4. Beadle BM, Liao K-P, Elting LS, Buchholz TA, Ang KK, Garden AS, Guadagnolo BA (2014) Improved survival using intensity-modulated radiation therapy in head and neck cancers: a SEER-Medicare analysis. Cancer 120(5):702–710

    Article  PubMed  Google Scholar 

  5. Bedford JL (2009) Treatment planning for volumetric modulated arc therapy. Med Phys 36(11):5128–5138

    Article  PubMed  Google Scholar 

  6. Bohsung J, Gillis S, Arrans R, Bakai A, De Wagter C, Knöös T, Mijnheer BJ, Paiusco M, Perrin BA, Welleweerd H, Williams P (2005) IMRT treatment planning – a comparative inter-system and inter-centre planning exercise of the ESTRO QUASIMODO group. Radiother Oncol 76(3):354–361

    Article  PubMed  Google Scholar 

  7. Boice JD Jr, Day NE, Andersen A, Brinton LA, Brown R, Choi NW, Clarke EA, Coleman MP, Curtis RE, Flannery JT (1985) Second cancers following radiation treatment for cervical cancer. An international collaboration among cancer registries. J Natl Cancer Inst 74(5):955–975

    PubMed  Google Scholar 

  8. Bortfeld T, Boyer AL, Schlegel W, Kahler DL, Waldron TJ (1994) Realization and verification of three-dimensional conformal radiotherapy with modulated fields. Int J Radiat Oncol Biol Phys 30(4):899–908

    Article  CAS  PubMed  Google Scholar 

  9. Bortfeld T, Jiang SB, Rietzel E (2004) Effects of motion on the total dose distribution. Semin Radiat Oncol 14(1):41–51

    Article  PubMed  Google Scholar 

  10. Bortfeld T, Jokivarsi K, Goitein M, Kung J, Jiang SB (2002) Effects of intra-fraction motion on IMRT dose delivery: statistical analysis and simulation. Phys Med Biol 47(13):2203–2220

    Article  PubMed  Google Scholar 

  11. Bortfeld T, Schlegel W (1993) Optimization of beam orientations in radiation therapy: some theoretical considerations. Phys Med Biol 38(2):291–304

    Article  CAS  PubMed  Google Scholar 

  12. Boyer AL, Biggs P, Galvin J, Klein EE, LoSasso T, Low D, Mah K, Yu C (2001) Basic applications of multileaf collimators. American Association of Physicists in Medicine, Madison

    Google Scholar 

  13. Boyer AL, Yu CX (1999) Intensity-modulated radiation therapy with dynamic multileaf collimators. Semin Radiat Oncol 9(1):48–59

    Article  CAS  PubMed  Google Scholar 

  14. Brenner DJ, Curtis RE, Hall EJ, Ron E (2000) Second malignancies in prostate carcinoma patients after radiotherapy compared with surgery. Cancer 88(2):398–406

    Article  CAS  PubMed  Google Scholar 

  15. Bresciani S, Di Dia A, Maggio A, Cutaia C, Miranti A, Infusino E, Stasi M (2013) Tomotherapy treatment plan quality assurance: the impact of applied criteria on passing rate in gamma index method. Med Phys 40(12):121711

    Article  PubMed  Google Scholar 

  16. Bzdusek K, Friberger H, Eriksson K, Hårdemark B, Robinson D, Kaus M (2009) Development and evaluation of an efficient approach to volumetric arc therapy planning. Med Phys 36(6):2328–2339

    Article  PubMed  Google Scholar 

  17. Chan OSH, Lee MCH, Hung AWM, Chang ATY, Yeung RMW, Lee AWM (2011) The superiority of hybrid-volumetric arc therapy (VMAT) technique over double arcs VMAT and 3D-conformal technique in the treatment of locally advanced non-small cell lung cancer – a planning study. Radiother Oncol 101(2):298–302

    Article  PubMed  Google Scholar 

  18. Chao KSC, Bhide S, Chen H, Asper J, Bush S, Franklin G, Kavadi V, Liengswangwong V, Gordon W, Raben A, Strasser J, Koprowski C, Frank S, Chronowski G, Ahamad A, Malyapa R, Zhang L, Dong L (2007) Reduce in variation and improve efficiency of target volume delineation by a computer-assisted system using a deformable image registration approach. Int J Radiat Oncol Biol Phys 68(5):1512–1521

    Article  PubMed  Google Scholar 

  19. Chen BAM, Yu Y, Daly ME, Farwell DG, Benedict S, Purdy JA (2013) Long-term experience with reduced planning target volume margins for patients treated by intensity-modulated radiotherapy with daily image-guidance for head and neck cancer. Head Neck 36(12):1766–1772. doi:10.1002/hed.23532

    Article  Google Scholar 

  20. Chui CS, Spirou SV (2001) Inverse planning algorithms for external beam radiation therapy. Med Dosim 26(2):189–197

    Article  CAS  PubMed  Google Scholar 

  21. Clivio A, Fogliata A, Franzetti-Pellanda A, Nicolini G, Vanetti E, Wyttenbach R, Cozzi L (2009) Volumetric-modulated arc radiotherapy for carcinomas of the anal canal: a treatment planning comparison with fixed field IMRT. Radiother Oncol 92(1):118–124

    Article  PubMed  Google Scholar 

  22. Coleman L, Skourou C (2013) Sensitivity of volumetric modulated arc therapy patient specific QA results to multileaf collimator errors and correlation to dose volume histogram based metrics. Med Phys 40(11):111715

    Article  PubMed  Google Scholar 

  23. Court L, Urribarri J, Makrigiorgos M (2010) Carbon fiber couches and skin sparing. J Appl Clin Med Phys 11(2):3241

    PubMed  Google Scholar 

  24. Court L, Wagar M, Berbeco R, Reisner A, Winey B, Schofield D, Ionascu D, Allen AM, Popple R, Lingos T (2010) Evaluation of the interplay effect when using RapidArc to treat targets moving in the craniocaudal or right-left direction. Med Phys 37(1):4–11

    Article  PubMed  Google Scholar 

  25. Court L, Wagar M, Bogdanov M, Ionascu D, Schofield D, Allen A, Berbeco R, Lingos T (2011) Use of reduced dose rate when treating moving tumors using dynamic IMRT. J Appl Clin Med Phys 12(1):3276

    Google Scholar 

  26. Court LE, Seco J, Lu X-Q, Ebe K, Mayo C, Ionascu D, Winey B, Giakoumakis N, Aristophanous M, Berbeco R, Rottman J, Bogdanov M, Schofield D, Lingos T (2010) Use of a realistic breathing lung phantom to evaluate dose delivery errors. Med Phys 37(11):5850–5857

    Article  PubMed  Google Scholar 

  27. Court LE, Tishler R, Xiang H, Allen AM, Makrigiorgos M, Chin L (2008) Experimental evaluation of the accuracy of skin dose calculation for a commercial treatment planning system. J Appl Clin Med Phys 9(1):2792

    Article  PubMed  Google Scholar 

  28. Court LE, Tishler RB (2007) Experimental evaluation of the impact of different head-and-neck intensity-modulated radiation therapy planning techniques on doses to the skin and shallow targets. Int J Radiat Oncol Biol Phys 69(2):607–613

    Article  PubMed  Google Scholar 

  29. Court LE, Wagar M, Ionascu D, Berbeco R, Chin L (2008) Management of the interplay effect when using dynamic MLC sequences to treat moving targets. Med Phys 35(5):1926–1931

    Article  PubMed  Google Scholar 

  30. Court LE, Wolfsberger L, Allen AM, James S, Tishler RB (2008) Clinical experience of the importance of daily portal imaging for head and neck IMRT treatments. J Appl Clin Med Phys 9(3):2756

    Article  PubMed  Google Scholar 

  31. Cozzi L, Dinshaw KA, Shrivastava SK, Mahantshetty U, Engineer R, Deshpande DD, Jamema SV, Vanetti E, Clivio A, Nicolini G, Fogliata A (2008) A treatment planning study comparing volumetric arc modulation with RapidArc and fixed field IMRT for cervix uteri radiotherapy. Radiother Oncol 89(2):180–191

    Article  PubMed  Google Scholar 

  32. Das IJ, Moskvin V, Johnstone PA (2009) Analysis of treatment planning time among systems and planners for intensity-modulated radiation therapy. J Am Coll Radiol 6(7):514–517

    Article  PubMed  Google Scholar 

  33. De Gersem W, Claus F, De Wagter C, Van Duyse B, De Neve W (2001) Leaf position optimization for step-and-shoot IMRT. Int J Radiat Oncol Biol Phys 51(5):1371–1388

    Article  PubMed  Google Scholar 

  34. de Greef M, Crezee J, van Eijk JC, Pool R, Bel A (2009) Accelerated ray tracing for radiotherapy dose calculations on a GPU. Med Phys 36(9):4095–4102

    Article  PubMed  Google Scholar 

  35. Deasy JO (1997) Multiple local minima in radiotherapy optimization problems with dose-volume constraints. Med Phys 24(7):1157–1161. decimal. http://www.dotdecimal.com/. Accessed 10 Feb 2014

  36. Deeley MA, Chen A, Datteri RD, Noble J, Cmelak A, Donnelly E, Malcolm A, Moretti L, Jaboin J, Niermann K, Yang ES, Yu DS, Dawant BM (2013) Segmentation editing improves efficiency while reducing inter-expert variation and maintaining accuracy for normal brain tissues in the presence of space-occupying lesions. Phys Med Biol 58(12):4071–4097

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Duan J, Shen S, Fiveash JB, Popple RA, Brezovich IA (2006) Dosimetric and radiobiological impact of dose fractionation on respiratory motion induced IMRT delivery errors: a volumetric dose measurement study. Med Phys 33(5):1380–1387

    Article  PubMed  Google Scholar 

  38. Earl MA, Afghan MKN, Yu CX, Jiang Z, Shepard DM (2007) Jaws-only IMRT using direct aperture optimization. Med Phys 34(1):307–314

    Article  CAS  PubMed  Google Scholar 

  39. Ezzell GA, Burmeister JW, Dogan N, LoSasso TJ, Mechalakos JG, Mihailidis D, Molineu A, Palta JR, Ramsey CR, Salter BJ, Shi J, Xia P, Yue NJ, Xiao Y (2009) IMRT commissioning: multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119. Med Phys 36(11):5359–5373

    Article  PubMed  Google Scholar 

  40. Ezzell GA, Galvin JM, Low D, Palta JR, Rosen I, Sharpe MB, Xia P, Xiao Y, Xing L, Yu CX (2003) Guidance document on delivery, treatment planning, and clinical implementation of IMRT: report of the IMRT Subcommittee of the AAPM Radiation Therapy Committee. Med Phys 30(8):2089–2115

    Article  PubMed  Google Scholar 

  41. Fenwick JD, Tome WA, Soisson ET, Mehta MP, Rock Mackie T (2006) Tomotherapy and other innovative IMRT delivery systems. Semin Radiat Oncol 16(4):199–208

    Article  PubMed  Google Scholar 

  42. Ford EC, Gaudette R, Myers L, Vanderver B, Engineer L, Zellars R, Song DY, Wong J, Deweese TL (2009) Evaluation of safety in a radiation oncology setting using failure mode and effects analysis. Int J Radiat Oncol Biol Phys 74(3):852–858

    Article  PubMed Central  PubMed  Google Scholar 

  43. Fraass BA, Lash KL, Matrone GM, Volkman SK, McShan DL, Kessler ML, Lichter AS (1998) The impact of treatment complexity and computer-control delivery technology on treatment delivery errors. Int J Radiat Oncol Biol Phys 42(3):651–659

    Article  CAS  PubMed  Google Scholar 

  44. Hadley SW, Kelly R, Lam K (2005) Effects of immobilization mask material on surface dose. J Appl Clin Med Phys 6(1):1–7

    Article  PubMed  Google Scholar 

  45. Hissoiny S, Ozell B, Despres P (2010) A convolution-superposition dose calculation engine for GPUs. Med Phys 37(3):1029–1037

    Article  PubMed  Google Scholar 

  46. Howell RM, Smith IP, Jarrio CS (2008) Establishing action levels for EPID-based QA for IMRT. J Appl Clin Med Phys 9(3):2721

    Article  PubMed  Google Scholar 

  47. IAEA (2003) A silent crisis: cancer treatment in developing countries. IAEA

    Google Scholar 

  48. IAEA (2013) AGaRT: The Advisory Group on increasing access to Radiotherapy Technology in low and middle income countries. IAEA, Vienna

    Google Scholar 

  49. IAEA (2014) IAEA: programme of action for cancer therapy. http://cancer.iaea.org/agart.asp. Accessed 17 Feb 14

  50. IAEA (2014) Prevention of accidental exposure in radiation therapy. https://rpop.iaea.org/RPOP/RPoP/Content/AdditionalResources/Training/1_TrainingMaterial/AccidentPreventionRadiotherapy.htm. Accessed 31 Mar 2014

  51. Ibbott GS, Followill DS, Molineu HA, Lowenstein JR, Alvarez PE, Roll JE (2008) Challenges in credentialing institutions and participants in advanced technology multi-institutional clinical trials. Int J Radiat Oncol Biol Phys 71(1 Suppl):S71–S75

    Article  PubMed Central  PubMed  Google Scholar 

  52. ICRU Report 83: prescribing, recording, and reporting photon-beam intensity-modulated radiation therapy (IMRT) (2010). J ICRU 10(1):NP. doi:10.1093/jicru/ndq002

  53. International Commission on Radiation Units and Measurements (1993) Prescribing, recording, and reporting photon beam therapy, vol 50, ICRU report. International Commission on Radiation Units and Measurements, Bethesda

    Google Scholar 

  54. International Commission on Radiation Units and Measurements (1999) Prescribing, recording, and reporting photon beam therapy, vol 62, ICRU report. International Commission on Radiation Units and Measurements, Bethesda

    Google Scholar 

  55. Jacques R, Taylor R, Wong J, McNutt T (2010) Towards real-time radiation therapy: GPU accelerated superposition/convolution. Comput Methods Prog Biomed 98(3):285–292

    Article  Google Scholar 

  56. Keall PJ, Mageras GS, Balter JM, Emery RS, Forster KM, Jiang SB, Kapatoes JM, Low DA, Murphy MJ, Murray BR, Ramsey CR, Herk MBV, Vedam SS, Wong JW, Yorke E (2006) The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med Phys 33(10):3874–3900

    Article  PubMed  Google Scholar 

  57. Kitamura K, Court LE, Dong L (2003) Comparison of imaging modalities for image-guided radiation therapy (IGRT). Nihon Igaku Hoshasen Gakkai Zasshi 63(9):574–578

    PubMed  Google Scholar 

  58. Klein EE, Hanley J, Bayouth J, Yin F-F, Simon W, Dresser S, Serago C, Aguirre F, Ma L, Arjomandy B, Liu C, Sandin C, Holmes T (2009) Task Group 142 report: quality assurance of medical accelerators. Med Phys 36(9):4197–4212

    Article  PubMed  Google Scholar 

  59. Komaki R, Liao Z, Liu H, Tucker S, Rice D (2006) Fatal pneumonitis associated with intensity-modulated radiation therapy for mesothelioma. In regard to Allen et al (Int J Radiat Oncol Biol Phys 2006. 65:640–645). Int J Radiat Oncol Biol Phys 66(5):1595–1596

    Google Scholar 

  60. Kruse JJ (2010) On the insensitivity of single field planar dosimetry to IMRT inaccuracies. Med Phys 37(6):2516–2524

    Article  PubMed  Google Scholar 

  61. Kry SF, Salehpour M, Followill DS, Stovall M, Kuban DA, White RA, Rosen II (2005) The calculated risk of fatal secondary malignancies from intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 62(4):1195–1203

    Article  PubMed  Google Scholar 

  62. Kry SF, Salehpour M, Followill DS, Stovall M, Kuban DA, White RA, Rosen II (2005) Out-of-field photon and neutron dose equivalents from step-and-shoot intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 62(4):1204–1216

    Article  PubMed  Google Scholar 

  63. Lee N, Chuang C, Quivey JM, Phillips TL, Akazawa P, Verhey LJ, Xia P (2002) Skin toxicity due to intensity-modulated radiotherapy for head-and-neck carcinoma. Int J Radiat Oncol Biol Phys 53(3):630–637

    Article  PubMed  Google Scholar 

  64. Liao ZX, Komaki RR, Thames HD Jr, Liu HH, Tucker SL, Mohan R, Martel MK, Wei X, Yang K, Kim ES, Blumenschein G, Hong WK, Cox JD (2010) Influence of technologic advances on outcomes in patients with unresectable, locally advanced non-small-cell lung cancer receiving concomitant chemoradiotherapy. Int J Radiat Oncol Biol Phys 76(3):775–781

    Article  PubMed  Google Scholar 

  65. Likhacheva A, Palmer M, Du W, Brown PD, Mahajan A (2012) Intensity modulated radiation therapy class solutions in Philips Pinnacle treatment planning for central nervous system malignancies: standardized, efficient, and effective. Pract Radiat Oncol 2(4):e145–e153

    Article  PubMed  Google Scholar 

  66. Liu HH, Jauregui M, Zhang X, Wang X, Dong L, Mohan R (2006) Beam angle optimization and reduction for intensity-modulated radiation therapy of non-small-cell lung cancers. Int J Radiat Oncol Biol Phys 65(2):561–572

    Article  PubMed  Google Scholar 

  67. Llacer J, Deasy JO, Portfeld TR, Solberg TD, Promberger C (2003) Absence of multiple local minima effects in intensity modulated optimization with dose-volume constraints. Phys Med Biol 48(2):183–210

    Article  PubMed  Google Scholar 

  68. Lorenz F, Nalichowski A, Rosca F, Killoran J, Wenz F, Zygmanski P (2008) An independent dose calculation algorithm for MLC-based radiotherapy including the spatial dependence of MLC transmission. Phys Med Biol 53(3):557–573

    Article  PubMed  Google Scholar 

  69. Lorenz F, Nalichowski A, Rosca F, Kung J, Wenz F, Zygmanski P (2007) Spatial dependence of MLC transmission in IMRT delivery. Phys Med Biol 52(19):5985–5999

    Article  PubMed  Google Scholar 

  70. Macklis RM, Meier T, Weinhous MS (1998) Error rates in clinical radiotherapy. J Clin Oncol 16(2):551–556

    CAS  PubMed  Google Scholar 

  71. Margalit DN, Chen Y-H, Catalano PJ, Heckman K, Vivenzio T, Nissen K, Wolfsberger LD, Cormack RA, Mauch P, Ng AK (2011) Technological advancements and error rates in radiation therapy delivery. Int J Radiat Oncol Biol Phys 81(4):e673–e679

    Article  PubMed  Google Scholar 

  72. Marks LB, Light KL, Hubbs JL, Georgas DL, Jones EL, Wright MC, Willett CG, Yin FF (2007) The impact of advanced technologies on treatment deviations in radiation treatment delivery. Int J Radiat Oncol Biol Phys 69(5):1579–1586

    Article  PubMed  Google Scholar 

  73. Mayo CS, Urie MM, Fitzgerald TJ (2005) Hybrid IMRT plans – concurrently treating conventional and IMRT beams for improved breast irradiation and reduced planning time. Int J Radiat Oncol Biol Phys 61(3):922–932

    Article  PubMed  Google Scholar 

  74. Mayo CS, Urie MM, Fitzgerald TJ, Ding L, Lo YC, Bogdanov M (2008) Hybrid IMRT for treatment of cancers of the lung and esophagus. Int J Radiat Oncol Biol Phys 71(5):1408–1418

    Article  PubMed  Google Scholar 

  75. McKenzie E, Balter P, Jones J, Followill D, Stingo F, Pulliam K, Kry S (2013) SU‐E‐T‐158: evaluation of the sensitivities of patient specific IMRT QA dosimeters. Med Phys 40(6):240

    Article  Google Scholar 

  76. Men C, Gu X, Choi D, Majumdar A, Zheng Z, Mueller K, Jiang SB (2009) GPU-based ultrafast IMRT plan optimization. Phys Med Biol 54(21):6565–6573

    Article  PubMed  Google Scholar 

  77. Michalski JM, Lawton C, El Naqa I, Ritter M, O’Meara E, Seider MJ, Lee WR, Rosenthal SA, Pisansky T, Catton C, Valicenti RK, Zietman AL, Bosch WR, Sandler H, Buyyounouski MK, Ménard C (2010) Development of RTOG consensus guidelines for the definition of the clinical target volume for postoperative conformal radiation therapy for prostate cancer. Int J Radiat Oncol Biol Phys 76(2):361–368

    Article  PubMed Central  PubMed  Google Scholar 

  78. Mijnheer B (2006) Guidelines for the verification of IMRT: the ESTRO QUASIMODO project. Radiother Oncol 81:S173–S173

    Article  Google Scholar 

  79. Miles EA, Clark CH, Urbano MTG, Bidmead M, Dearnaley DP, Harrington KJ, A’Hern R, Nutting CM (2005) The impact of introducing intensity modulated radiotherapy into routine clinical practice. Radiother Oncol 77(3):241–246

    Article  PubMed  Google Scholar 

  80. Mohan R, Arnfield M, Tong S, Wu Q, Siebers J (2000) The impact of fluctuations in intensity patterns on the number of monitor units and the quality and accuracy of intensity modulated radiotherapy. Med Phys 27(6):1226–1237

    Article  CAS  PubMed  Google Scholar 

  81. Mohan R, Wu Q, Wang X, Stein J (1996) Intensity modulation optimization, lateral transport of radiation, and margins. Med Phys 23(12):2011–2021

    Article  CAS  PubMed  Google Scholar 

  82. Moran JM, Dempsey M, Eisbruch A, Fraass BA, Galvin JM, Ibbott GS, Marks LB (2011) Safety considerations for IMRT: executive summary. Med Phys 38(9):5067–5072

    Article  PubMed  Google Scholar 

  83. Murphy MJ (2012) Kilovoltage radiography for robotic linac IGRT. In: Bourland JD (ed) Image-guided radiation therapy, Imaging in medical diagnosis and therapy. CRC Press, Boca Raton, pp 147–155

    Google Scholar 

  84. Mutic S, Low DA, Klein EE, Dempsey JF, Purdy JA (2001) Room shielding for intensity-modulated radiation therapy treatment facilities. Int J Radiat Oncol Biol Phys 50(1):239–246

    Article  CAS  PubMed  Google Scholar 

  85. NCRP (2005) NCRP report 151: structural shielding design and evaluation for megavoltage X- and gamma-ray radiotherapy facilities. National Council on Radiation Protection and Measurements, Bethesda

    Google Scholar 

  86. Nelms BE, Opp D, Robinson J, Wolf TK, Zhang G, Moros E, Feygelman V (2012) VMAT QA: measurement-guided 4D dose reconstruction on a patient. Med Phys 39(7):4228–4238

    Article  PubMed  Google Scholar 

  87. Nelms BE, Simon JA (2007) A survey on planar IMRT QA analysis. J Appl Clin Med Phys 8(3):2448

    Article  PubMed  Google Scholar 

  88. Nelms BE, Zhen H, Tome WA (2011) Per-beam, planar IMRT QA passing rates do not predict clinically relevant patient dose errors. Med Phys 38(2):1037–1044

    Article  PubMed Central  PubMed  Google Scholar 

  89. Niemierko A (1997) Reporting and analyzing dose distributions: a concept of equivalent uniform dose. Med Phys 24(1):103–110

    Article  CAS  PubMed  Google Scholar 

  90. Oguchi H, Obata Y (2009) Commissioning of modulator-based IMRT with XiO treatment planning system. Med Phys 36(1):261–269

    Article  PubMed  Google Scholar 

  91. Olch AJ (2012) Evaluation of the accuracy of 3DVH software estimates of dose to virtual ion chamber and film in composite IMRT QA. Med Phys 39(1):81–86

    Article  PubMed  Google Scholar 

  92. Olsen LA, Robinson CG, He GR, Wooten HO, Yaddanapudi S, Mutic S, Yang D, Moore KL (2014) Automated radiation therapy treatment plan workflow using a commercial application programming interface. Pract Radiat Oncol 4(6):358–367

    Article  PubMed  Google Scholar 

  93. Otto K (2008) Volumetric modulated arc therapy: IMRT in a single gantry arc. Med Phys 35(1):310–317

    Article  PubMed  Google Scholar 

  94. Papp D, Unkelbach J (2014) Direct leaf trajectory optimization for volumetric modulated arc therapy planning with sliding window delivery. Med Phys 41(1):011701

    Article  PubMed  Google Scholar 

  95. Pasler M, Georg D, Wirtz H, Lutterbach J (2011) Effect of photon-beam energy on VMAT and IMRT treatment plan quality and dosimetric accuracy for advanced prostate cancer. Strahlenther Onkol 187(12):792–798

    Article  PubMed  Google Scholar 

  96. Pawlicki T, Yoo S, Court LE, McMillan SK, Rice RK, Russell JD, Pacyniak JM, Woo MK, Basran PS, Shoales J, Boyer AL (2008) Moving from IMRT QA measurements toward independent computer calculations using control charts. Radiother Oncol 89(3):330–337

    Article  PubMed  Google Scholar 

  97. Persson GF, Nygaard DE, Hollensen C, Munck af Rosenschold P, Mouritsen LS, Due AK, Berthelsen AK, Nyman J, Markova E, Roed AP, Roed H, Korreman S, Specht L (2012) Interobserver delineation variation in lung tumour stereotactic body radiotherapy. Br J Radiol 85(1017):e654–e660

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Popescu CC, Olivotto IA, Beckham WA, Ansbacher W, Zavgorodni S, Shaffer R, Wai ES, Otto K (2010) Volumetric modulated arc therapy improves dosimetry and reduces treatment time compared to conventional intensity-modulated radiotherapy for locoregional radiotherapy of left-sided breast cancer and internal mammary nodes. Int J Radiat Oncol Biol Phys 76(1):287–295

    Article  PubMed  Google Scholar 

  99. Popple RA, Fiveash JB, Brezovich IA (2007) Effect of beam number on organ-at-risk sparing in dynamic multileaf collimator delivery of intensity modulated radiation therapy. Med Phys 34(10):3752–3759

    Article  PubMed  Google Scholar 

  100. Portelance L, Chao KSC, Grigsby PW, Bennet H, Low D (2001) Intensity-modulated radiation therapy (IMRT) reduces small bowel, rectum, and bladder doses in patients with cervical cancer receiving pelvic and para-aortic irradiation. Int J Radiat Oncol Biol Phys 51(1):261–266

    Article  CAS  PubMed  Google Scholar 

  101. Pratx G, Xing L (2011) GPU computing in medical physics: a review. Med Phys 38(5):2685–2697

    Article  PubMed  Google Scholar 

  102. Raaymakers BW, Lagendijk JJ, Overweg J, Kok JG, Raaijmakers AJ, Kerkhof EM, van der Put RW, Meijsing I, Crijns SP, Benedosso F, van Vulpen M, de Graaff CH, Allen J, Brown KJ (2009) Integrating a 1.5 T MRI scanner with a 6 MV accelerator: proof of concept. Phys Med Biol 54(12):N229–N237

    Article  CAS  PubMed  Google Scholar 

  103. Ramsey C, Dube S, Hendee WR (2003) It is necessary to validate each individual IMRT treatment plan before delivery. Med Phys 30(9):2271–2273

    Article  PubMed  Google Scholar 

  104. Rao M, Yang W, Chen F, Sheng K, Ye J, Mehta V, Shepard D, Cao D (2010) Comparison of Elekta VMAT with helical tomotherapy and fixed field IMRT: plan quality, delivery efficiency and accuracy. Med Phys 37(3):1350–1359

    Article  PubMed  Google Scholar 

  105. Salari E, Men C, Romeijn HE (2011) Accounting for the tongue-and-groove effect using a robust direct aperture optimization approach. Med Phys 38(3):1266–1279

    Article  PubMed  Google Scholar 

  106. Samuelian JM, Callister MD, Ashman JB, Young-Fadok TM, Borad MJ, Gunderson LL (2012) Reduced acute bowel toxicity in patients treated with intensity-modulated radiotherapy for rectal cancer. Int J Radiat Oncol Biol Phys 82(5):1981–1987

    Article  PubMed  Google Scholar 

  107. Seco J, Sharp GC, Turcotte J, Gierga D, Bortfeld T, Paganetti H (2007) Effects of organ motion on IMRT treatments with segments of few monitor units. Med Phys 34(3):923–934

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  108. Shepard DM, Earl MA, Li XA, Naqvi S, Yu C (2002) Direct aperture optimization: a turnkey solution for step-and-shoot IMRT. Med Phys 29(6):1007–1018

    Article  CAS  PubMed  Google Scholar 

  109. Shirato H, Ishikawa M, Shimizu S, Bengua G, Sutherland K, Onimaru R, Aoyama H (2012) Kilovoltage X-ray IMRT and IGRT. In: Bourland JD (ed) Image-guided radiation therapy, Imaging in medical diagnosis and therapy. CRC Press, Boca Raton, pp 131–146

    Google Scholar 

  110. Siebers JV, Tong S, Lauterbach M, Wu Q, Mohan R (2001) Acceleration of dose calculations for intensity-modulated radiotherapy. Med Phys 28(6):903–910

    Article  CAS  PubMed  Google Scholar 

  111. Smith JC, Dieterich S, Orton CG (2011) It is STILL necessary to validate each individual IMRT treatment plan with dosimetric measurements before delivery. Med Phys 38(2):553–555

    Article  PubMed  Google Scholar 

  112. Solaiappan G, Singaravelu G, Prakasarao A, Rabbani B, Supe SS (2009) Influence of photon beam energy on IMRT plan quality for radiotherapy of prostate cancer. Rep Pract Oncol Radiother 14(1):18–31

    Article  Google Scholar 

  113. Stein J, Bortfeld T, Dorschel B, Schlegel W (1994) Dynamic X-ray compensation for conformal radiotherapy by means of multi-leaf collimation. Radiother Oncol 32(2):163–173

    Article  CAS  PubMed  Google Scholar 

  114. Stovall M, Blackwell CR, Cundiff J, Novack DH, Palta JR, Wagner LK, Webster EW, Shalek RJ (1995) Fetal dose from radiotherapy with photon beams: report of AAPM Radiation Therapy Committee Task Group No. 36. Med Phys 22(1):63–82

    Article  CAS  PubMed  Google Scholar 

  115. Sulman EP, Schwartz DL, Le TT, Ang KK, Morrison WH, Rosenthal DI, Ahamad A, Kies M, Glisson B, Weber R, Garden AS (2009) IMRT reirradiation of head and neck cancer – disease control and morbidity outcomes. Int J Radiat Oncol Biol Phys 73(2):399–409

    Article  PubMed  Google Scholar 

  116. Sykes JR, Williams PC (1998) An experimental investigation of the tongue and groove effect for the Philips multileaf collimator. Phys Med Biol 43(10):3157–3165

    Article  CAS  PubMed  Google Scholar 

  117. Takeda K, Takai Y, Narazaki K, Mitsuya M, Umezawa R, Kadoya N, Fujita Y, Sugawara T, Kubozono M, Shimizu E, Abe K, Shirata Y, Ishikawa Y, Yamamoto T, Kozumi M, Dobashi S, Matsushita H, Chida K, Ishidoya S, Arai Y, Jingu K, Yamada S (2012) Treatment outcome of high-dose image-guided intensity-modulated radiotherapy using intra-prostate fiducial markers for localized prostate cancer at a single institute in Japan. Radiat Oncol (Lond) 7:105

    Article  Google Scholar 

  118. Thomas SJ, Hoole AC (2004) The effect of optimization on surface dose in intensity modulated radiotherapy (IMRT). Phys Med Biol 49(21):4919–4928

    Article  PubMed  Google Scholar 

  119. Tyagi A, Supe SS, Sandeep S, Singh MP (2010) A dosimetric analysis of 6 MV versus 15 MV photon energy plans for intensity modulated radiation therapy (IMRT) of carcinoma of cervix. Rep Pract Oncol Radiother 15(5):125–131

    Article  PubMed Central  PubMed  Google Scholar 

  120. van der Est H, Prins P, Heijmen BJM, Dirkx MLP (2012) Intensity modulated radiation therapy planning for patients with a metal hip prosthesis based on class solutions. Pract Radiat Oncol 2(1):35–40

    Article  PubMed  Google Scholar 

  121. van der Wielen GJ, Mutanga TF, Incrocci L, Kirkels WJ, Vasquez Osorio EM, Hoogeman MS, Heijmen BJM, de Boer HCJ (2008) Deformation of prostate and seminal vesicles relative to intraprostatic fiducial markers. Int J Radiat Oncol Biol Phys 72(5):1604–1611.e1603

    Article  PubMed  Google Scholar 

  122. van Kranen S, van Beek S, Rasch C, van Herk M, Sonke J-J (2009) Setup uncertainties of anatomical sub-regions in head-and-neck cancer patients after offline CBCT guidance. Int J Radiat Oncol Biol Phys 73(5):1566–1573

    Article  PubMed  Google Scholar 

  123. van Loon J, Siedschlag C, Stroom J, Blauwgeers H, van Suylen R-J, Knegjens J, Rossi M, van Baardwijk A, Boersma L, Klomp H, Vogel W, Burgers S, Gilhuijs K (2012) Microscopic disease extension in three dimensions for non-small-cell lung cancer: development of a prediction model using pathology-validated positron emission tomography and computed tomography features. Int J Radiat Oncol Biol Phys 82(1):448–456

    Article  PubMed  Google Scholar 

  124. Wang X, Spirou S, LoSasso T, Stein J, Chui CS, Mohan B (1996) Dosimetric verification of intensity-modulated fields. Med Phys 23(3):317–327

    Article  CAS  PubMed  Google Scholar 

  125. Wang X, Zhang X, Dong L, Liu H, Wu Q, Mohan R (2004) Development of methods for beam angle optimization for IMRT using an accelerated exhaustive search strategy. Int J Radiat Oncol Biol Phys 60(4):1325–1337

    Article  PubMed  Google Scholar 

  126. Watanabe Y, Nakaguchi Y (2013) 3D evaluation of 3DVH program using BANG3 polymer gel dosimeter. Med Phys 40(8):082101

    Article  PubMed  CAS  Google Scholar 

  127. Webb S (1994) Optimizing the planning of intensity-modulated radiotherapy. Phys Med Biol 39(12):2229–2246

    Article  CAS  PubMed  Google Scholar 

  128. Weksberg DC, Palmer MB, Vu KN, Rebueno NC, Sharp HJ, Luo D, Yang JN, Shiu AS, Rhines LD, McAleer MF, Brown PD, Chang EL (2012) Generalizable class solutions for treatment planning of spinal stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys 84(3):847–853

    Article  PubMed  Google Scholar 

  129. Welsh J, Gomez D, Palmer MB, Riley BA, Mayankkumar AV, Komaki R, Dong L, Zhu XR, Likhacheva A, Liao Z, Hofstetter WL, Ajani JA, Cox JD (2011) Intensity-modulated proton therapy further reduces normal tissue exposure during definitive therapy for locally advanced distal esophageal tumors: a dosimetric study. Int J Radiat Oncol Biol Phys 81(5):1336–1342

    Article  PubMed Central  PubMed  Google Scholar 

  130. White EA, Brock KK, Jaffray DA, Catton CN (2009) Inter-observer variability of prostate delineation on cone beam computerised tomography images. Clin Oncol 21(1):32–38

    Article  CAS  Google Scholar 

  131. Wu Q, Mohan R (2002) Multiple local minima in IMRT optimization based on dose-volume criteria. Med Phys 29(7):1514–1527

    Article  PubMed  Google Scholar 

  132. Wu Q, Mohan R, Niemierko A, Schmidt-Ullrich R (2002) Optimization of intensity-modulated radiotherapy plans based on the equivalent uniform dose. Int J Radiat Oncol Biol Phys 52(1):224–235

    Article  PubMed  Google Scholar 

  133. Xia P, Verhey LJ (2001) Delivery systems of intensity-modulated radiotherapy using conventional multileaf collimators. Med Dosim 26(2):169–177

    Article  CAS  PubMed  Google Scholar 

  134. Yang J, Amini A, Williamson R, Zhang L, Zhang Y, Komaki R, Liao Z, Cox J, Welsh J, Court L, Dong L (2013) Automatic contouring of brachial plexus using a multi-atlas approach for lung cancer radiation therapy. Pract Radiat Oncol 3(4):e139–e147

    Article  PubMed  Google Scholar 

  135. Yang J, Beadle BM, Garden AS, Gunn B, Rosenthal D, Ang K, Frank S, Williamson R, Balter P, Court L, Dong L (2014) Auto-segmentation of low-risk clinical target volume for head and neck radiation therapy. Pract Radiat Oncol 4(1):e31–e37

    Article  PubMed  Google Scholar 

  136. Yu CX, Jaffray DA, Wong JW (1998) The effects of intra-fraction organ motion on the delivery of dynamic intensity modulation. Phys Med Biol 43(1):91–104

    Article  CAS  PubMed  Google Scholar 

  137. Zelefsky MJ, Fuks Z, Hunt M, Yamada Y, Marion C, Ling CC, Amols H, Venkatraman ES, Leibel SA (2002) High-dose intensity modulated radiation therapy for prostate cancer: early toxicity and biochemical outcome in 772 patients. Int J Radiat Oncol Biol Phys 53(5):1111–1116

    Article  PubMed  Google Scholar 

  138. Zhang X, Liu H, Wang X, Dong L, Wu Q, Mohan R (2004) Speed and convergence properties of gradient algorithms for optimization of IMRT. Med Phys 31(5):1141–1152

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence E. Court Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Court, L.E., Balter, P., Mohan, R. (2015). Principles of IMRT. In: Nishimura, Y., Komaki, R. (eds) Intensity-Modulated Radiation Therapy. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55486-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55486-8_2

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55485-1

  • Online ISBN: 978-4-431-55486-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics