Skip to main content

Sequelae of Therapy of Head and Neck Cancer: Their Prevention and Therapy

  • Chapter
Intensity-Modulated Radiation Therapy

Abstract

Intensity-modulated radiotherapy (IMRT) has an integral part in the management of head and neck cancer (HNC). The head and neck is a compact space with many organs at risk in very close vicinity of the irradiated volumes. This chapter discusses the toxicities associated with therapy of HNC and methods to reduce them, emphasizing the role of IMRT. The main discussed toxicities are xerostomia, dysphagia, hearing loss, speech changes, spinal cord, optic neuropathy, brachial plexopathy, and osteoradionecrosis. The prevalence of these toxicities, their assessment, and dose–effect relationships and methods to prevent and treat them are described.

This chapter emphasizes the role of IMRT in reducing complications of irradiation of head and neck cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nuyts S, Dirix P, Clement PM et al (2009) Impact of adding concomitant chemotherapy to hyperfractionated accelerated radiotherapy for advanced head and neck squamous cell carcinoma. Int J Radiat Oncol Biol Phys 73:1088–1095

    PubMed  Google Scholar 

  2. Garden AS, Harris J, Trotti A et al (2008) Long-term results of concomitant boost radiation plus concurrent cisplatin for advanced head and neck carcinomas: a phase II trial of the radiation therapy oncology group (RTOG 99–14). Int J Radiat Oncol Biol Phys 71(5):1351–1355

    PubMed Central  PubMed  Google Scholar 

  3. Harari PM (2008) Beware the swing and a miss: baseball precautions for conformal radiotherapy. Int J Radiat Oncol Biol Phys 70:657

    PubMed  Google Scholar 

  4. Eisbruch A et al (2007) Editorial: reducing xerostomia by IMRT: what may, and may not, be achieved. J Clin Oncol 25(31):4863–4864

    PubMed  Google Scholar 

  5. Dirix P, Nuyts S, Van den Bogaert W (2006) Radiation-induced xerostomia in patients with head and neck cancer: a literature review. Cancer 107:2525–2534

    PubMed  Google Scholar 

  6. Dirix P, Nuyts S (2010) Evidence-based organ-sparing radiotherapy in head and neck cancer. Lancet Oncol 11(1):85–91

    PubMed  Google Scholar 

  7. Eisbruch A, Ship JA, Martel MK et al (1996) Parotid gland sparing in patients undergoing bilateral head and neck irradiation: techniques and early results. Int J Radiat Oncol Biol Phys 36:469–480

    CAS  PubMed  Google Scholar 

  8. Eisbruch A, Rhodus N, Rosenthal D et al (2003) How should we measure and report radiotherapy-induced xerostomia? Semin Radiat Oncol 13:226–234

    PubMed  Google Scholar 

  9. Chen W-C, Lai CH et al (2013) Scintigraphic assessment of salivary function after intensity-modulated radiotherapy for head and neck cancer: correlations with parotid dose and quality of life. Oral Oncol 49:42–48

    PubMed  Google Scholar 

  10. Blanco AI, Chao KS, El Naqa I et al (2005) Dose-volume modelling of salivary function in patients with head-and-neck cancer receiving radiotherapy. Int J Radiat Oncol Biol Phys 62:1055–1069

    PubMed  Google Scholar 

  11. Eisbruch A, Harris J, Garden AS et al (2010) Multi-institutional trial of accelerated hypofractionated intensity-modulated radiation therapy for early-stage oropharyngeal cancer (RTOG 00–22). Int J Radiat Oncol Biol Phys 76(5):1333–1338

    PubMed Central  PubMed  Google Scholar 

  12. Scrimger R, Kanji A, Parliament M et al (2007) Correlation between saliva production and quality of life measurements in head and neck cancer patients treated with intensity-modulated radiotherapy. Am J Clin Oncol 30:271–277

    PubMed  Google Scholar 

  13. Saarilahti K, Kouri M, Collan J et al (2005) Intensity modulated radiotherapy for head and neck cancer: evidence for preserved salivary gland function. Radiother Oncol 74:251–258

    PubMed  Google Scholar 

  14. Parliament MB, Scrimger RA, Anderson SG et al (2004) Preservation of oral health-related quality of life and salivary flow rates after inverse-planned intensity-modulated radiotherapy (IMRT) for head-and-neck cancer. Int J Radiat Oncol Biol Phys 58:663–673

    PubMed  Google Scholar 

  15. Münter MW, Karger CP, Hoffner SG et al (2004) Evaluation of salivary gland function after treatment of head-and-neck tumors with intensity-modulated radiotherapy by quantitative pertechnetate scintigraphy. Int J Radiat Oncol Biol Phys 58:175–184

    PubMed  Google Scholar 

  16. Eisbruch A, Kim HM, Terrell JE et al (2001) Xerostomia and its predictors following parotid-sparing irradiation of head-and-neck cancer. Int J Radiat Oncol Biol Phys 50:695–704

    CAS  PubMed  Google Scholar 

  17. Chao KS, Deasy JO, Markman J et al (2001) A prospective study of salivary function sparing in patients with head-and-neck cancers receiving intensity-modulated or three-dimensional radiation therapy: initial results. Int J Radiat Oncol Biol Phys 49:907–916

    CAS  PubMed  Google Scholar 

  18. Lee N, Harris J, Garden AS et al (2009) Intensity-modulated radiation therapy with or without chemotherapy for nasopharyngeal carcinoma: radiation therapy oncology group phase II trial 0225. J Clin Oncol 27(22):3684–3690

    PubMed Central  PubMed  Google Scholar 

  19. Pow EH, Kwong DL, McMillan AS et al (2006) Xerostomia and quality of life after intensity-modulated radiotherapy vs. conventional radiotherapy for early-stage nasopharyngeal carcinoma: initial report on a randomized controlled clinical trial. Int J Radiat Oncol Biol Phys 66(4):981–991

    PubMed  Google Scholar 

  20. Kam MK, Leung SF, Zee B et al (2007) Prospective randomized study of intensity-modulated radiotherapy on salivary gland function in early-stage nasopharyngeal carcinoma patients. J Clin Oncol 25:4873–4879

    PubMed  Google Scholar 

  21. Braam PM, Terhaard CH, Roesink JM, Raaijmakers CP (2006) Intensity-modulated radiotherapy significantly reduces xerostomia compared with conventional radiotherapy. Int J Radiat Oncol Biol Phys 66:975–980

    PubMed  Google Scholar 

  22. Feng M, Jabbari S, Lin A et al (2005) Predictive factors of local-regional recurrences following parotid sparing intensity modulated or 3D conformal radiotherapy for head and neck cancer. Radiother Oncol 77:32–38

    PubMed  Google Scholar 

  23. Daly ME, Lieskovsky Y, Pawlicki T et al (2007) Evaluation of patterns of failure and subjective salivary function in patients treated with intensity modulated radiotherapy for head and neck squamous cell carcinoma. Head Neck 29:211–220

    PubMed  Google Scholar 

  24. Eisbruch A, Marsh LH, Dawson LA et al (2004) Recurrences near base of skull after IMRT for head-and-neck cancer: Implications for target delineation in high neck and for parotid gland sparing. Int J Radiat Oncol Biol Phys 59:28–42

    PubMed  Google Scholar 

  25. David MB, Eisbruch A (2007) Delineating neck targets for intensity-modulated radiation therapy of head and neck cancer. What have we learned from marginal recurrences? Front Radiat Ther Oncol 40:193–207

    PubMed  Google Scholar 

  26. Astreinidou E, Dehnad H, Terhaard CH, Raaijmakers CP (2004) Level II lymph nodes and radiation-induced xerostomia. Int J Radiat Oncol Biol Phys 58:124–131

    PubMed  Google Scholar 

  27. Grégoire V, Levendag P, Ang KK et al (2003) CT-based delineation of lymph node levels and related CTVs in the node negative neck: AHANCA, EORTC, GORTEC, RTOG consensus guidelines. Radiother Oncol 69:227–236

    PubMed  Google Scholar 

  28. Grégoire V, Eisbruch A, Hamoir M, Levendag P (2006) Proposal for the delineation of the nodal CTV in the node-positive and the post-operative neck. Radiother Oncol 79:15–20

    PubMed  Google Scholar 

  29. Maes A, Weltens C, Flamen P et al (2002) Preservation of parotid function with uncomplicated conformal radiotherapy. Radiother Oncol 63:203–211

    PubMed  Google Scholar 

  30. Li Y, Taylor J, Ten Haken R et al (2007) The impact of dose on parotid salivary recovery in head and neck cancer patients treated with radiation therapy. Int J Radiat Oncol Biol Phys 67:660–669

    PubMed Central  PubMed  Google Scholar 

  31. Robar JL, Day A, Clancey J et al (2007) Spatial and dosimetric variability of organs at risk in head-and-neck intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 68:1121–1130

    PubMed  Google Scholar 

  32. Little M et al (2012) Reducing xerostomia after chemo-IMRT for head-and-neck cancer: beyond sparing the parotid glands. Int J Radiat Oncol Biol Phys 83(3):1007–1014

    PubMed Central  PubMed  Google Scholar 

  33. Eisbruch A, Ten Haken RK, Kim HM et al (1999) Dose, volume, and function relationships in parotid salivary glands following conformal and intensity-modulated irradiation. Int J Radiat Oncol Biol Phys 45:577–587

    CAS  PubMed  Google Scholar 

  34. Barker JL, Garden AS, Ang KK et al (2004) Quantification of volumetric and geometric changes during fractionated radiotherapy. Int J Radiat Oncol Biol Phys 59:960–970

    PubMed  Google Scholar 

  35. Chambers MS, Garden AS, Rosenthal D et al (2005) Intensity-modulated radiotherapy: is xerostomia still prevalent? Curr Oncol Rep 7(2):131–136

    PubMed  Google Scholar 

  36. Deasy JO et al (2010) Radiotherapy dose–volume effects on salivary gland function. Int J Radiat Oncol Biol Phys 76(3):S58–S63

    PubMed Central  PubMed  Google Scholar 

  37. Portaluri M, Fucilli F, Castagna R et al (2006) Three-dimensional conformal radiotherapy for locally advanced (stage II and worse) head-and-neck cancer: dosimetric and clinical evaluation. Int J Radiat Oncol Biol Phys 66:1036–1043

    PubMed  Google Scholar 

  38. Tsujii H (1985) Quantitative dose–response analysis of salivary function following radiotherapy using sequential RI-sialography. Int J Radiat Oncol Biol Phys 11:1603–1612

    CAS  PubMed  Google Scholar 

  39. Bagesund M, Richter S, Ringden O et al (2007) Longitudinal scintigraphic study of parotid and submandibular gland function after total body irradiation. Int J Paediatr Dent 17:34–40

    PubMed  Google Scholar 

  40. Malpani BL, Samuel AM, Ray S et al (1995) Differential kinetics of parotid and submandibular gland function as demonstrated by scintigraphic means. Nucl Med Commun 16:706–709

    CAS  PubMed  Google Scholar 

  41. Raza H, Khan AU, Hameed A et al (2006) Quantitative evaluation of salivary gland dysfunction after radioiodine therapy using salivary gland scintigraphy. Nucl Med Commun 27:495–499

    CAS  PubMed  Google Scholar 

  42. Kashima HK, Kirkman WR, Andrews JR (1965) Postradiation sialadenitis: a study following irradiation of human salivary glands. AJR Am J Roentgenol 94:271–291

    Google Scholar 

  43. Stephens LC, King GK, Peters LJ et al (1986) Acute and late radiation injury in rhesus parotid glands. Am J Pathol 124:469–478

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Murdoch-Kinch C et al (2008) Dose effect relationships for the submandibular salivary glands and implications for their sparing by intensity modulated radiotherapy. Int J Radiat Oncol Biol Phys 72(2):373–382

    PubMed Central  PubMed  Google Scholar 

  45. Dijkstra PU, Kalk WW, Roodenburg JL (2004) Trismus in head and neck oncology: a systematic review. Oral Oncol 40:879–889

    CAS  PubMed  Google Scholar 

  46. Paleri V, Roe JWG, Strojan P, Corry J, Grégoire V, Hamoir M, Eisbruch A, Mendenhall WM, Silver CE, Rinaldo A, Takes RP, Ferlito A (2013) Strategies to reduce long-term postchemoradiation dysphagia in patients with head and neck cancer: an evidence-based review. Head Neck. doi:10.1002/hed.23251

    Google Scholar 

  47. Caglar HB, Tishler RB, Othus M et al (2008) Dose to larynx predicts for swallowing complications after intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 72:1110–1118

    PubMed  Google Scholar 

  48. Caudell JJ, Schaner PE, Meredith RF, Locher JL, Nabell LM, Carroll WR et al (2009) Factors associated with long-term dysphagia after definitive radiotherapy for locally advanced head-and-neck cancer. Int J Radiat Oncol Biol Phys 73(2):410–415

    PubMed  Google Scholar 

  49. Dirix P, Abbeel S, Vanstraelen B, Hermans R, Nuyts S (2009) Dysphagia after chemoradiotherapy for head-and-neck squamous cell carcinoma: dose–effect relationships for the swallowing structures. Int J Radiat Oncol Biol Phys 75(2):385–392

    CAS  PubMed  Google Scholar 

  50. Guadagnolo BA, Liu CC, Cormier JN, Du XL (2010) Evaluation of trends in the use of intensity-modulated radiotherapy for head and neck cancer from 2000 through 2005: socioeconomic disparity and geographic variation in a large population-based cohort. Cancer 116(14):3505–3512

    PubMed  Google Scholar 

  51. Ward EC, van As-Brooks CJ (2007) Head and neck cancer: treatment, rehabilitation, and outcomes. Plural Publishing, , San Diego/Abingdon

    Google Scholar 

  52. Van der Molen L, van Rossum MA, Burkhead LM et al (2011) A randomized preventive rehabilitation trial in advanced head and neck cancer patients treated with chemoradiotherapy: feasibility, compliance, and short-term effects. Dysphagia 2:155–170

    Google Scholar 

  53. Roe JW, Carding PN, Dwivedi RC et al (2010) Swallowing outcomes following intensity modulated radiation therapy (IMRT) for head & neck cancer – a systematic review. Oral Oncol 46:727–733

    PubMed  Google Scholar 

  54. Levendag PC, Teguh DN, Voet P et al (2007) Dysphagia disorders in patients with cancer of the oropharynx are significantly affected by the radiation therapy dose to the superior and middle constrictor muscle: a dose–effect relationship. Radiother Oncol 85:64–73

    PubMed  Google Scholar 

  55. Van der Molen L, van Rossum MA, Burkhead LM et al (2009) Functional outcomes and rehabilitation strategies in patients treated with chemoradiotherapy for advanced head and neck cancer: a systematic review. Eur Arch Otorhinolaryngol 266:889–900

    PubMed  Google Scholar 

  56. Herb K, Cho S, Stiles MA (2006) Temporomandibular joint pain and dysfunction. Curr Pain Headache Rep 10:408–414

    PubMed  Google Scholar 

  57. Goldstein M, Maxymiw WG, Cummings BJ et al (1999) The effects of antitumor irradiation on mandibular opening and mobility: a prospective study of 58 patients. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 88:365–373

    CAS  PubMed  Google Scholar 

  58. Hutcheson KA, Lewin JS, Barringer DA, Lisec A, Gunn GB, Moore MW, Holsinger FC (2012) Late dysphagia after radiotherapy-based treatment of head and neck cancer. Cancer 118(23):5793–5799

    PubMed Central  PubMed  Google Scholar 

  59. Eisbruch A, Schwartz M, Rasch C et al (2004) Dysphagia and aspiration after chemoradiotherapy for head-and-neck cancer: which anatomic structures are affected and can they be spared by IMRT? Int J Radiat Oncol Biol Phys 60:1425–1439

    PubMed  Google Scholar 

  60. Snadra N et al (2013) Reduction of the dose to the elective neck in head and neck squamous cell carcinoma, a randomized clinical trial using intensity modulated radiotherapy (IMRT). Dosimetrical analysis and effect on acute toxicity. Radiother Oncol 109(2):323–329

    Google Scholar 

  61. Mendenhall WM, Amdur RJ, Morris CG, Kirwan JM, Li JG (2010) Intensity modulated radiotherapy for oropharyngeal squamous cell carcinoma. Laryngoscope 120:2218–2222

    PubMed  Google Scholar 

  62. Cartmill B, Cornwell P, Ward E et al (2011) Emerging understanding of dosimetric factors impacting on dysphagia and nutrition following radiotherapy for oropharyngeal cancer. Head Neck Radiother Oncol 101:394–402

    Google Scholar 

  63. Feng FY, Kim HM, Lyden TH et al (2007) IMRT of head and neck cancer aiming to reduce dysphagia: early dose-effect relationships for the swallowing structures. Int J Radiat Oncol Biol Phys 68:1289–1298

    PubMed  Google Scholar 

  64. Jensen K, Lambertsen K, Torkov P, Dahl M, Jensen AB, Grau C (2007) Patient assessed symptoms are poor predictors of objective findings. Results from a cross sectional study in patients treated with radiotherapy for pharyngeal cancer. Acta Oncol 46(8):1159–1168

    PubMed  Google Scholar 

  65. Teguh DN, Levendag PC, Noever I et al (2008) Treatment techniques and site considerations regarding dysphagia-related quality of life in cancer of the oropharynx and nasopharynx. Int J Radiat Oncol Biol Phys 72:1119–1127

    PubMed  Google Scholar 

  66. Feng FY, Kim HM, Lyden TH et al (2010) Intensity-modulated chemoradiotherapy aiming to reduce dysphagia in patients with oropharyngeal cancer: clinical and functional results. J Clin Oncol 28(16):2732–2738

    PubMed Central  PubMed  Google Scholar 

  67. Dirix P, Nuyts S (2010) Value of intensity-modulated radiotherapy in stage IV head-and-neck squamous cell carcinoma. Int J Radiat Oncol Biol Phys 78:1373–1380

    PubMed  Google Scholar 

  68. Lee NY, de Arruda FF, Puri DR et al (2006) A comparison of intensity-modulated radiation therapy and concomitant boost radiotherapy in the setting of concurrent chemotherapy for locally advanced oropharyngeal carcinoma. Int J Radiat Oncol Biol Phys 66:966–974

    PubMed  Google Scholar 

  69. Fua TF, Corry J, Milner AD, Cramb J, Walsham SF, Peters LJ (2007) Intensity modulated radiotherapy for nasopharyngeal carcinoma: clinical correlation of dose to the pharyngo-esophageal axis and dysphagia. Int J Radiat Oncol Biol Phys 67:976–981

    PubMed  Google Scholar 

  70. Huguenin P, Beer KT, Allal A et al (2004) Concomitant cisplatin significantly improves locoregional control in advanced head and neck cancers treated with hyperfractionated radiotherapy. J Clin Oncol 22:4665–4673

    CAS  PubMed  Google Scholar 

  71. Caudell JJ, Schaner PE, Desmond RA, Meredith RF, Spencer SA, Bonner JA (2010) Dosimetric factors associated with long-term dysphagia after definitive radiotherapy for squamous cell carcinoma of the head and neck. Int J Radiat Oncol Biol Phys 76:403–409

    PubMed  Google Scholar 

  72. Teguh DN, Levendag PC, Sewnaik A et al (2008) Results of fiberoptic endoscopic evaluation of swallowing vs radiation dose in the swallowing muscles after radiotherapy of cancer in the oropharynx. Radiother Oncol 89:57–64

    PubMed  Google Scholar 

  73. Eisbruch A, Lyden T, Bradford CR et al (2002) Objective assessment of swallowing dysfunction and aspiration after radiation concurrent with chemotherapy for head-and-neck cancer. Int J Radiat Oncol Biol Phys 53:23–28

    PubMed  Google Scholar 

  74. Oh YT, Kim CH, Choi JH et al (2004) Sensory neural hearing loss after concurrent cisplatin and radiation therapy for nasopharyngeal carcinoma. Radiother Oncol 72:79–82

    PubMed  Google Scholar 

  75. Merchant TE, Gould CJ, Xiong X et al (2004) Early neuro-otologic effects of three-dimensional irradiation in children with primary brain tumors. Int J Radiat Oncol Biol Phys 58:1194–1207

    PubMed  Google Scholar 

  76. Mendenhall WM, Million RR, Cassisi NJ (1980) Elective neck irradiation in squamous cell carcinoma of the head and neck. Head Neck Surg 3:15–20

    CAS  PubMed  Google Scholar 

  77. Van der Laan HP, Christianen ME, Bijl HP, Schilstra C, Langendijk JA (2012) The potential benefit of swallowing sparing intensity modulated radiotherapy to reduce swallowing dysfunction: an in silico planning comparative study. Radiother Oncol 103:76–81

    PubMed  Google Scholar 

  78. van der Molen L et al (2013) Dysphagia and trismus after concomitant chemo-IMRT in advanced head and neck cancer; dose effect relationships for swallowing and mastication structures. Radiother Oncol 106:364–369

    PubMed  Google Scholar 

  79. Wang X, Hu C, Eisbruch A (2011) Organ sparing radiation therapy for head and neck cancer. Nat Rev Clin Oncol 8(11):639–648

    CAS  PubMed  Google Scholar 

  80. Bhandare N, Jackson A, Eisbruch A, Pan CC, Flickinger JC, Antonelli P, Mendenhall WM (2010) Radiotherapy and hearing loss. Int J Radiat Oncol Biol Phys 76(3):S50–S57

    PubMed Central  PubMed  Google Scholar 

  81. Pacholke HD, Amdur RJ, Schmalfuss IM, Louis D, Mendenhall WM (2005) Contouring the middle and inner ear on radiotherapy planning scans. Am J Clin Oncol 28(2):143–147

    PubMed  Google Scholar 

  82. Hunag E et al (2002) IMRT for pediatric medulloblastoma: early report on the reduction of ototoxicity. Int J Radiat Oncol Biol Phys 52:599–605

    Google Scholar 

  83. Sultanem K, Hk S, Xia P et al (2000) Three-dimensional intensity modulated radiotherapy in the treatment of nasopharyngeal carcinoma: the University of California-San Francisco experience. Int J Radiat Oncol Biol Phys 48:711–722

    CAS  PubMed  Google Scholar 

  84. Grau C, Møller K, Overgaard M, Overgaard J, Elbrønd O (1991) Sensorineural hearing loss in patients treated with irradiation for nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys 21:723–728

    CAS  PubMed  Google Scholar 

  85. Anteunis LJ, Wanders SL, Hendriks JJ et al (1994) A prospective longitudinal study on radiation-induced hearing loss. Am J Surg 168:408–411

    CAS  PubMed  Google Scholar 

  86. Chen WC, Jackson A, Budnick AS et al (2006) Sensorineural hearing loss in combined modality treatment of nasopharyngeal carcinoma. Cancer 106:820–829

    PubMed  Google Scholar 

  87. Honoré HB, Bentzen SM, Møller K, Grau C (2002) Sensori-neural hearing loss after radiotherapy for nasopharyngeal carcinoma: individualized risk estimation. Radiother Oncol 65:9–16

    PubMed  Google Scholar 

  88. Johannesen TB, Rasmussen K, Winther FØ, Halvorsen U, Lote K (2002) Late radiation effects on hearing, vestibular function, and taste in brain tumor patients. Int J Radiat Oncol Biol Phys 53:86–90

    PubMed  Google Scholar 

  89. Pan CC, Eisbruch A, Lee JS et al (2005) Prospective study of inner ear radiation dose and hearing loss in head-and-neck cancer patients. Int J Radiat Oncol Biol Phys 61:1393–1402

    PubMed  Google Scholar 

  90. Herrmann F, Dörr W, Müller R, Herrmann T (2006) A prospective study on radiation-induced changes in hearing function. Int J Radiat Oncol Biol Phys 65:1338–1344

    PubMed  Google Scholar 

  91. Hitchcock YJ, Tward JD, Szabo A, Bentz BG, Shrieve DC (2009) Relative contributions of radiation and cisplatin-based chemotherapy to sensorineural hearing loss in head-and-neck cancer patients. Int J Radiat Oncol Biol Phys 73(3):779–788

    CAS  PubMed  Google Scholar 

  92. Van de Putten L, de Bree R, Plukker JT et al (2006) Permanent unilateral hearing loss after radiotherapy for parotid gland tumors. Head Neck 28:902–908

    Google Scholar 

  93. Fu KK, Woofhouse RJ, Quivey JM et al (1982) The significance of laryngeal edema following radiotherapy of carcinoma of the vocal cord. Cancer 49:6555–6558

    Google Scholar 

  94. Wolden SL, Chen WC, Pfister DG, Kraus DH, Berry SL, Zelefsky MJ (2006) Intensity-modulated radiation therapy (IMRT) for nasopharyngeal cancer: update of the Memorial Sloan-Kettering experience. Int J Radiat Oncol Biol Phys 64:57–62

    PubMed  Google Scholar 

  95. Hirano M (1981) Clinical examination of voice. In: Arnold GE, Winkel F, Wyke BD (eds) Disorders of human communication. Springer, New York, pp 81–84

    Google Scholar 

  96. Fung K, Yoo J, Leeper A et al (2001) Vocal function following radiation for non-laryngeal versus laryngeal tumors of the head and neck. Laryngoscope 111:1920–1924

    CAS  PubMed  Google Scholar 

  97. Hocevar-Boltezar I, Zargi M, Strojan P (2009) Risk factors for voice quality after radiotherapy for early glottic cancer. Radiother Oncol 93:524–529

    PubMed  Google Scholar 

  98. Cox JD et al (1995) Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC). Int J Radiat Oncol Biol Phys 31(5):1341–1346

    CAS  PubMed  Google Scholar 

  99. Sanguineti G, Adapala P, Endres EJ et al (2007) Dosimetric predictors of laryngeal edema. Int J Radiat Oncol Biol Phys 68:741–749

    PubMed  Google Scholar 

  100. Dornfeld K, Simmons JR, Karnell L et al (2007) Radiation doses to structures within and adjacent to the larynx are correlated with long-term diet and speech-related quality of life. Int J Radiat Oncol Biol Phys 68:750–757

    PubMed  Google Scholar 

  101. Rancati T, Sanguineti G, Fiorino C (2007) NTCP modeling of subacute/late laryngeal edema scored by fiberoptic examination: evidence of a large volume effect. Int J Radiat Oncol Biol Phys 69(3):S409–S410

    Google Scholar 

  102. Schultheiss TE, Kun LE, Ang KK et al (1995) Radiation response of the central nervous system. Int J Radiat Oncol Biol Phys 31:1093–1112

    CAS  PubMed  Google Scholar 

  103. Pallis CA, Louis S, Morgan RL (1961) Radiation myelopathy. Brain 84:460–479

    CAS  PubMed  Google Scholar 

  104. Thames HD Jr, Withers HR, Peters LJ, Fletcher GH (1982) Changes in early and late radiation responses with altered dose fractionation: implications for dose-survival relationships. Int J Radiat Oncol Biol Phys 8:219–226

    PubMed  Google Scholar 

  105. Reagan TJ, Thomas JE, Colby MY Jr (1968) Chronic progressive radiation myelopathy. Its clinical aspects and differential diagnosis. JAMA 203:106–110

    CAS  PubMed  Google Scholar 

  106. Jones A (1964) Transient radiation myelopathy (with reference to Lhermitte’s sign of electrical paraesthesia). Br J Radiol 37:727–744

    CAS  PubMed  Google Scholar 

  107. Lim DC, Gagnon PJ, Meranvil S, et al. (2010) Lhermitte’s sign developing after IMRT for head and neck cancer. Int J Otolaryngol 2010:907–960

    Google Scholar 

  108. St Clair WH, Arnold SM, Sloan AE et al (2003) Spinal cord and peripheral nerve injury: current management and investigations. Semin Radiat Oncol 13:322–332

    PubMed  Google Scholar 

  109. Esik O, Csere T, Stefanits K et al (2003) A review on radiogenic Lhermitte’s sign. Pathol Oncol Res 9:115–120

    PubMed  Google Scholar 

  110. Schultheiss TE, Stephens LC, Peters LJ (1986) Survival in radiation myelopathy. Int J Radiat Oncol Biol Phys 12:1765–1769

    CAS  PubMed  Google Scholar 

  111. Coderre JA, Morris GM, Micca PL et al (2006) Late effects of radiation on the central nervous system: role of vascular endothelial damage and glial stem cell survival. Radiat Res 166:495–503

    CAS  PubMed  Google Scholar 

  112. Philippens ME, Pop LA, Visser AG et al (2007) Dose-volume effects in rat thoracolumbar spinal cord: the effects of nonuniform dose distribution. Int J Radiat Oncol Biol Phys 69:204–213

    PubMed  Google Scholar 

  113. Phillips TL, Buschke F (1969) Radiation tolerance of the thoracic spinal cord. Am J Roentgenol 105:659–664

    CAS  Google Scholar 

  114. Van der Kogel AJ (1977) Radiation tolerance of the spinal cord. Dependence on fractionation and extended overall times. In: Radiobiological research and radiotherapy, vol 1. International Atomic Energy Agency, Vienna, pp 83–90

    Google Scholar 

  115. Abbatucci JS, Delozier T, Quint R, Roussel A, Brune D (1978) Radiation myelopathy of the cervical spinal cord: time, dose and volume factors. Int J Radiat Oncol Biol Phys 4:239–248

    CAS  PubMed  Google Scholar 

  116. Kim YH, Fayos JV (1981) Radiation tolerance of the cervical spinal cord. Radiology 139:473–478

    CAS  PubMed  Google Scholar 

  117. McCunniff AJ, Liang MJ (1989) Radiation tolerance of the cervical spinal cord. Int J Radiat Oncol Biol Phys 16:675–678

    CAS  PubMed  Google Scholar 

  118. Marcus RB, Million RR (1990) The incidence of myelitis after irradiation of the cervical spinal cord. Int J Radiat Oncol Biol Phys 19:3–8

    PubMed  Google Scholar 

  119. Ang KK, Price RE, Stephens LC et al (1993) The tolerance of primate spinal cord to re-irradiation. Int J Radiat Oncol Biol Phys 25:459–464

    CAS  PubMed  Google Scholar 

  120. Atkins HL, Tretter P (1966) Time-dose considerations in radiation myelopathy. Acta Radiol Ther Phys Biol 5:79–94

    CAS  PubMed  Google Scholar 

  121. Jeremic BJ, Djuric L, Mijatovic L (1991) Incidence of radiation myelitis of the cervical spinal cord at doses of 5500 cGy or greater. Cancer 68:2138–2141

    CAS  PubMed  Google Scholar 

  122. Ang KK, Jiang GL, Feng Y et al (2001) Extent and kinetics of recovery of occult spinal cord injury. Int J Radiat Oncol Biol Phys 50:1013–1020

    CAS  PubMed  Google Scholar 

  123. Powell S, Cooke J, Parsons C (1990) Radiation-induced brachial plexus injury: follow-up of two different fractionation schedules. Radiother Oncol 18(3):213–220

    CAS  PubMed  Google Scholar 

  124. Stoll BA, Andrews JT (1966) Radiation-induced peripheral neuropathy. Br Med J 1:834–837

    PubMed Central  CAS  PubMed  Google Scholar 

  125. Bowen BC, Verma A, Brandon AH, Fiedler JA (1996) Radiation-induced brachial plexopathy: MR and clinical findings. AJNR Am J Neuroradiol 17(10):1932–1936

    CAS  PubMed  Google Scholar 

  126. Johansson S, Svensson H, Denekamp J (2002) Dose response and latency for radiation-induced fibrosis, edema, and neuropathy in breast cancer patients. Int J Radiat Oncol Biol Phys 52(5):1207–1219

    PubMed  Google Scholar 

  127. Schierle C, Winograd JM (2004) Radiation-induced brachial plexopathy: review. Complication without a cure. J Reconstr Microsurg 20:149–152

    PubMed  Google Scholar 

  128. Amini A, Yang J, Williamson R, McBurney ML, Erasmus J Jr, Allen PK, Karhade M, Komaki R, Liao Z, Gomez D, Cox J, Dong L, Welsh J (2012) Dose constraints to prevent radiation-induced brachial plexopathy in patients treated for lung cancer. Int J Radiat Oncol Biol Phys 2012(82):e391–e398

    Google Scholar 

  129. Kori SH, Foley KM, Posner JB (1981) Brachial plexus lesions in patients with cancer: 100 cases. Neurology 31:45–50

    CAS  PubMed  Google Scholar 

  130. Churn M, Clough V, Slater A (2000) Early onset of bilateral brachial plexopathy during mantle radiotherapy for Hodgkin’s disease. Clin Oncol 12:289–291

    CAS  Google Scholar 

  131. Chen AM, Hall WH, Li J, Beckett L, Farwell DG, Lau DH, Purdy JA (2012) Brachial plexus-associated neuropathy after high-dose radiation therapy for head-and-neck cancer. Int J Radiat Oncol Biol Phys 84:165–169

    PubMed  Google Scholar 

  132. Platteaux N, Dirix P, Hermans R, Nuyts S (2010) Brachial plexopathy after chemoradiotherapy for head and neck squamous cell carcinoma. Strahlenther Onkol. Aug 30. [Epub ahead of print]

    Google Scholar 

  133. Truong MT et al (2012) Radiation dose to the brachial plexus in head-and-neck intensity-modulated radiation therapy and its relationship to tumor and nodal stage. Int J Radiat Oncol Biol Phys 84(1):158–164

    PubMed  Google Scholar 

  134. Emami B, Lyman J, Brown A et al (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21:109–122

    CAS  PubMed  Google Scholar 

  135. Bajrovic A, Rades D, Fehlauer F et al (2004) Is there a life-long risk of brachial plexopathy after radiotherapy of supraclavicular lymph nodes in breast cancer patients? Radiother Oncol 71(3):297–301

    PubMed  Google Scholar 

  136. Wilson FM (1989) Fundamentals and principles of ophthalmology. Basic and clinical science course. 1987–1988. American Academy of Ophthalmology, San Francisco

    Google Scholar 

  137. Lessell S (2004) Friendly fire: neurogenic visual loss from radiation therapy. J Neuroophthalmol 24:243–250

    PubMed  Google Scholar 

  138. Danesh-Meyer HV (2008) Radiation-induced optic neuropathy. J Clin Neurosci 15:95–100

    PubMed  Google Scholar 

  139. Parsons JT (1980) The effect of radiation on normal tissues of the head and neck. In: Million RR, Cassisi NJ (eds) Management of head and neck cancer: a multidisciplinary approach. J. B. Lippincott Company, Philadelphia, pp 173–207

    Google Scholar 

  140. Gordon KB, Char DH, Sagerman RH (1995) Late effects of radiation on the eye and ocular adnexa. Int J Radiat Oncol Biol Phys 31:1123–1139

    CAS  PubMed  Google Scholar 

  141. Parsons JT, Bova FJ, Fitzgerald CR et al (1994) Radiation optic neuropathy after megavoltage external-beam irradiation: analysis of time–dose factors. Int J Radiat Oncol Biol Phys 30:755–763

    CAS  PubMed  Google Scholar 

  142. Kline LB, Kim JY, Ceballos R (1985) Radiation optic neuropathy. Ophthalmology 92:1118–1126

    CAS  PubMed  Google Scholar 

  143. Roden D, Bosley TM, Fowble B, Clark J, Savino PJ, Sergott RC, Schatz NJ (1990) Delayed radiation injury to the retrobulbar optic nerves and chiasm. Clinical syndrome and treatment with hyperbaric oxygen and corticosteroids. Ophthalmology 97:346–351

    CAS  PubMed  Google Scholar 

  144. Mayo C, Martel MK, Marks LB et al (2010) Radiation dose volume effects of optic nerves and chiasm. Int J Radiat Oncol Biol Phys 76(3 Suppl):S28–S35

    PubMed  Google Scholar 

  145. Goldsmith BJ, Rosenthal SA, Wara WM, Larson DA (1992) Optic neuropathy after irradiation of meningioma. Radiology 185:71–76

    CAS  PubMed  Google Scholar 

  146. Weintraub JA, Bennett J, Gaspar LE (2011) Successful treatment of radiation-induced optic neuropathy. Pract Radiat Oncol 1:40–44

    PubMed  Google Scholar 

  147. Mendenhall WM (2004) Mandibular osteoradionecrosis. J Clin Oncol 22:4867–4868

    PubMed  Google Scholar 

  148. Sciubba JJ, Goldenberg D (2006) Oral complications of radiotherapy. Lancet Oncol 7:175–183

    Google Scholar 

  149. Vissink A, Jansma J, Spijkervet FKL et al (2003) Oral sequelae of head and neck radiotherapy. Crit Rev Oral Biol Med 14:199–212

    CAS  PubMed  Google Scholar 

  150. Reuther T, Schuster T, Mende U, Kubler A (2003) Osteoradionecrosis of the jaws as a side effect of radiotherapy of head and neck tumour patients – a report of a thirty year retrospective review. Int J Oral Maxillofac Surg 32:289–295

    CAS  PubMed  Google Scholar 

  151. Curi MM et al (2007) Management of extensive osteoradionecrosis of mandible with radical resection & immediate microvascular reconstruction. J Oral Maxilla Surg 65:434–438

    Google Scholar 

  152. Cox JD et al (1995) Toxicity criteria of the Radiotherapy Oncology Group & European Organisation for Research & Treatment of Cancer. Int J Radiat Oncol Biol Phys 31:1314–1346

    Google Scholar 

  153. Ben-David MA, Diamante M, Radawski JD et al (2007) Lack of osteoradionecrosis of the mandible after intensity-modulated radiotherapy for head and neck cancer: likely contributions of both dental care and improved dose distributions. Int J Radiat Oncol Biol Phys 68(2):396–402

    PubMed Central  PubMed  Google Scholar 

  154. Katsura K, Sasai K, Sato K, Saito M, Hoshina H, Hayashi T (2008) Relationship between oral health status and development of osteoradionecrosis of the mandible: a retrospective longitudinal study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 105:7381–7382

    Google Scholar 

  155. Gomez DR et al (2011) Correlation of osteoradionecrosis & dental events with dosimetric parameters in intensity modulated radiotherapy for head & neck cancer. Int J Radiat Oncol Biol Phys 81(4):e207–e213

    PubMed  Google Scholar 

  156. Studer G, Gratz KW, Glanzmann C (2004) Osteoradionecrosis of the mandibula in patients treated with different fractionations. Strahlenther Onkol 180:233–240

    PubMed  Google Scholar 

  157. Marx RE, Johnson RP (1987) Studies in the radiobiology of osteoradionecrosis and their clinical significance. Oral Surg Oral Med Oral Pathol 64:379–390

    CAS  PubMed  Google Scholar 

  158. Glanzmann C, Gratz KW (1995) Radionecrosis of the mandible: a retrospective analysis of the incidence and risk factors. Radiother Oncol 36:94–100

    CAS  PubMed  Google Scholar 

  159. Gregoire V, Levendag P, Ang KK, Bernier J et al (2003) CT-based delineation of lymph node levels and related CTVs in the node negative neck: DAHANCA, EORTC, GORTEC, NCIC, RTOG consensus guidelines. Radiother Oncol 69:227–236

    PubMed  Google Scholar 

  160. Claus F, Duthoy W, Boterberg T, De Gersem W, Huys J, Vermeersch H, De Neve W (2002) Intensity modulated radiation therapy for oropharyngeal and oral cavity tumors: clinical use and experience. Oral Oncol 38:597–604

    PubMed  Google Scholar 

  161. van den Broek GB, Balm AJ, van den Brekel MW, Hauptmann M, Schornagel JH, Rasch CR (2006) Relationship between clinical factors and the incidence of toxicity after intra-arterial chemoradiation for head and neck cancer. Radiother Oncol 81:143–150

    PubMed  Google Scholar 

  162. Studer G, Studer SP, Zwahlen RA, Huguenin P, Gratz KW, Lutolf UM, Glanzmann C (2006) Osteoradionecrosis of the mandible: minimized risk profile following intensity-modulated radiation therapy (IMRT). Strahlenther Onkol 182:283–288

    PubMed  Google Scholar 

  163. Mendenhall WM, Morris CG, Amdur RJ, Hinerman RW, Malyapa RS, Werning JW, Lansford CD, Villaret DB (2006) Definitive radiotherapy for tonsillar squamous cell carcinoma. Am J Clin Oncol 29:290–297

    PubMed  Google Scholar 

  164. Jansma JVA et al (1992) Protocol for prevention & treatment of oral sequelae resulting from Head & neck radiotherapy. Cancer 70(8):2171–2180

    CAS  PubMed  Google Scholar 

  165. Lyons A, Ghazali N (2008) Osteoradionecrosis of the jaws: current understanding of its pathophysiology and treatment. Br J Oral Maxillofac Surg 46:653–660

    PubMed  Google Scholar 

  166. Marx RE, Johnson RP, Kline SN (1985) (1985) Prevention of osteoradionecrosis: a randomized prospective clinical trial of hyperbaric oxygen versus penicillin. J Am Dent Assoc 111:49–54

    CAS  PubMed  Google Scholar 

  167. Goldwaser BR, Chuang SK, Kaban LB, August M (2007) Risk factor assessment for the development of osteoradionecrosis. J Oral Maxillofac Surg 65:2311–2316

    PubMed  Google Scholar 

  168. Assael LA (2004) New foundations in understanding osteoradionecrosis of the jaws. J Oral Maxillofac Surg 62(2):125–126

    PubMed  Google Scholar 

  169. Støre G, Eribe ER, Olsen I (2005) DNA-DNA hybridization demonstrates multiple bacteria in osteoradionecrosis. Int J Oral Maxillofac Surg 34(2):193–196

    PubMed  Google Scholar 

  170. Delanian S, Lefaix JL (2004) The radiation-induced fibroatrophic process: Therapeutic perspective via the antioxidant pathway. Radiother Oncol 73(2):119–131

    PubMed  Google Scholar 

  171. Maurer P, Meyer L (2006) Osteoradionecrosis of the mandible-resection aided by measurement of partial pressure of oxygen (pO2): a technical report. J Oral Maxillofac Surg 64(3):560–562

    PubMed  Google Scholar 

  172. Marx RE, Ehler WJ, Tayapongsak P, Pierce LW (1990) Relationship of oxygen dose to angiogenesis induction in irradiated tissue. Am J Surg 160:519–524

    CAS  PubMed  Google Scholar 

  173. Greenwood TW, Gilchrist AG (1973) Hyperbaric oxygen & wound healing in post-irradiation head neck surgery. Br J Surg 60:394–397

    CAS  PubMed  Google Scholar 

  174. Elsaleh H, Quoc-Chuong Bui, Michael L, Withers HR et al. (2004) Int J Radiat Oncol Biol Phys 60(3):871–878

    Google Scholar 

  175. Winsor T, Winsor D (1985) The noninvasive laboratory-history and future of thermography. Angiology 36(6):341–353

    CAS  PubMed  Google Scholar 

  176. Christiansen J, Gerow G (1990) Thermography. Williams and Wilkins, Baltimore, p 200

    Google Scholar 

  177. Mainous EG, Boyne J, Hart GB (1973) Elimination of sequestrum & healing of osteoradionecrosis of the mandible after hyperbaric oxygen therapy. J Oral Surg 31:336–339

    CAS  PubMed  Google Scholar 

  178. Brown LR, Dreizen S, Daly TE et al (1978) Interrelations of oral microorganisms, immunoglobulins, and dental caries following radiotherapy. J Dent Res 57:882–893

    CAS  PubMed  Google Scholar 

  179. Keene HJ, Fleming TJ (1987) Prevalence of caries-associated microflora after radiotherapy in patients with cancer of the head and neck. Oral Surg Oral Med Oral Pathol 64:421–426

    CAS  PubMed  Google Scholar 

  180. Llory H, Dammron A, Gioanni M, Frank RM (1972) Some population changes in oral anaerobic microorganisms, Streptococcus mutants and yeasts following irradiation of the salivary glands. Caries Res 6:298–311

    CAS  PubMed  Google Scholar 

  181. Regezi JA, Courtney RM, Kerr DA (1976) Dental management of patients irradiated for oral cancer. Cancer 38:994–1000

    CAS  PubMed  Google Scholar 

  182. Daly TE, Drane JB (1972) Proceedings: the management of teeth related to the treatment of oral cancer. Proc Natl Cancer Conf 7:147–154

    CAS  PubMed  Google Scholar 

  183. Epstein JB, McBride BC, Stevenson-Moore P, Merilees H, Spinelli J (1991) The efficacy of chlorhexidine gel in reduction of streptococcus mutants and lactobacillus species in patients treated with radiation therapy. Oral Surg Oral Med Oral Pathol 71:172–178

    CAS  PubMed  Google Scholar 

  184. Joyston-Bechal S, Hayes K, Davenport ES, Hardie JM (1992) Caries incidence, mutants streptococci and lactobacilli in irradiated patients during a 12-month preventive programme using chlorhexidine and fluoride. Caries Res 26:384–390

    CAS  PubMed  Google Scholar 

  185. Vissink A, Burlage FR, Spijkervet FK, Jansma J, Coppes RP (2003) Prevention and treatment of the consequences of head and neck radiotherapy. Crit Rev Oral Biol Med 14:213–225

    CAS  PubMed  Google Scholar 

  186. Jansma J, Vissink A, Gravenmade EJ, Visch LL, Fidler V, Retief DH (1989) In vivo study on the prevention of postradiation caries. Caries Res 23:172–178

    CAS  PubMed  Google Scholar 

  187. Fleming TJ (1983) Use of topical fluoride by patients receiving cancer therapy. Curr Probl Cancer 7:37–41

    CAS  PubMed  Google Scholar 

  188. Al-Joburi W, Clark C, Fisher R (1991) A comparison of the effectiveness of two systems for the prevention of radiation caries. Clin Prev Dent 13:15–19

    CAS  PubMed  Google Scholar 

  189. Epstein JB, van der Meij EH, Lunn R, Stevenson-Moore P (1996) Effects of compliance with fluoride gel application on caries and caries risk in patients after radiation therapy for head and neck cancer. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 82:268–275

    CAS  PubMed  Google Scholar 

  190. Dreizen S, Brown LR, Daly TE, Drane JB (1977) Prevention of xerostomia-related dental caries in irradiated cancer patients. J Dent Res 56:99–104

    CAS  PubMed  Google Scholar 

  191. Horiot JC, Bone MC, Ibrahim E, Castro JR (1981) Systematic dental management in head and neck irradiation. Int J Radiat Oncol Biol Phys 7:1025–1029

    CAS  PubMed  Google Scholar 

  192. Horiot JC, Schraub S, Bone MC et al (1983) Dental preservation in patients irradiated for head and neck tumours: a 10-year experience with topical fluoride and a randomized trial between two fluoridation methods. Radiother Oncol 1:77–82

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avraham Eisbruch M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Kadam, A.S., Eisbruch, A. (2015). Sequelae of Therapy of Head and Neck Cancer: Their Prevention and Therapy. In: Nishimura, Y., Komaki, R. (eds) Intensity-Modulated Radiation Therapy. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55486-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55486-8_11

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55485-1

  • Online ISBN: 978-4-431-55486-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics