Brownian Motion Applied to Macroscopic Group Robots Without Mutual Communication

Part of the Mathematics for Industry book series (MFI, volume 14)


Microscopic Brownian motion is applied to macroscopic transportation systems by group robots. We feature our systems with neither mutual communication among robots nor apparatuses of external sensing. We develop continuum mechanical picture of group robots. We take “temperature” as a key parameter that describes the systems. An ordinary time differential equation is developed to determine time development of the temperature. After we give a formula of force acted on objects transported by robots, simulation studies are done. The results are examined from a point of view of comparison with Newton mechanical calculation.


Macroscopic physics Brownian motion Swarm robots without mutual communication Continuum mechanical picture Temperature parameter Transportation systems 


  1. Badano, B.M.I.: A multi-agent architecture with distributed coordination for an autonomous robot. Ph.D. thesis, Universitat de Girona (2008)Google Scholar
  2. Bennet, D., McInnes, C.R.: Space craft formation flying using bifurcating potential fields. In: International Astronautical Congress, IAC-08-C1.6.4 (2008)Google Scholar
  3. Bogoliubov, N.G.: Problems of a Dynamical Theory in Statistical Physics. Studies in Statistical Mechanics, 1 North Holland (1962)Google Scholar
  4. Burgard, W., Moors, M., Fox, D., Simmons, R., Thrun, S.: Collaborative multi-robot exploration. In: Proceedings 2000 IEEE, International Conference on Robotics and Automation, pp. 476–481 (2000)Google Scholar
  5. Chen, X., Li, Y.: Smooth formation navigation of multiple mobile robots for avoiding moving obstacles. Int. J. Control Autom Syst 4(4), 466–479 (2006)MATHGoogle Scholar
  6. Fearing, R.S.: In: 2nd International Symposium on Micromachines and Human Sciences, pp. 1–15 (1991)Google Scholar
  7. Fincham, D.: Programs for the molecular dynamics simulation of liquids: i spherical molecules with short-ranged interactions. Comput. Phys. Commun. 21, 247–256 (1980)CrossRefGoogle Scholar
  8. Freda, L., Oriolo, G.: Frontier-based probabilistic strategies for sensor-based exploration. In: Proceedings 2005 IEEE, International Conference on Robotics and Automation, pp. 3892–3896 (2005)Google Scholar
  9. Gordon, N.: Fundamental problems in the theory of multi-agent robotics. Ph.D. thesis, Israel Institute of Technology (2010)Google Scholar
  10. Gould, H., Tobochnik, J.: An Introduction to Computer Simulation Methods. Addison-Wesley Publishing Company, Boston (1996)Google Scholar
  11. Hänggi, P., Marcheson, F.: Artificial Brownian motors: controlling transport on the nanoscale. Rev. Mod. Phys. 81, 383–442 (2009)CrossRefGoogle Scholar
  12. Itami, T.: Continuum mechanical analysis of collective motion of robots(in Japanese). Trans. SICE 48(3), 141–150 (2012a)Google Scholar
  13. Itami, T.: Relaxation times in motion of group robots without specific sensors for mutual information. In: SICE2011, WeA13-02 (2011)Google Scholar
  14. Itami, T.: “Brownian Motion” by macroscopic group robots. Cybern. Phys. 1(4), 258–265 (2012b)Google Scholar
  15. Itami, T.: Controlling brownian motion applied to macroscopic group robots without mutual communication. In: MMAR2014 (2014)Google Scholar
  16. Itoh, A., Kobayashi, T., Saotome Y.: Motion control of protozoa by electrical field(in Japanese). Trans. JSME(C), 67(655), 775–781 (2001)Google Scholar
  17. Kimura, T., Sugano, R.: Bibun-keishiki ni yoru Kaiseki-rikigaku (Analytical Mechanics based on Differential Forms) (in Japanese). In: Yoshioka-shoten (1999)Google Scholar
  18. Li, Y., Chen, X.: Modeling and simulation of swarms for collecting objects. Robotica 24(03), 315–324 (2006)CrossRefGoogle Scholar
  19. Liu, J., Wu, J.: Multi-Agent Robotic Systems. CRC Press (2001)Google Scholar
  20. Nakamura, A., Ota, J., Arai, T.: Human-supervised multiple mobile robot system. IEEE Trans. Robot. Autom. 18–5, 728–743 (2002)CrossRefGoogle Scholar
  21. Olson, C.F.: Probabilistic self-localization for mobile robots. IEEE. Trans. Robot. Autom. 16–1, 55–66 (2000)CrossRefGoogle Scholar
  22. Ota, J.: Multi-agent robot systems as distributed autonomous sytems. Adv. Eng. Inf. 20(1), 59–70 (2006)MathSciNetCrossRefGoogle Scholar
  23. Ohkura, K., Yasuda, T., Matsumura, Y.: Analyzing macroscopic behavior in a swarm robotic system based on clustering. In: SICE2011, WeA13-06 (2011)Google Scholar
  24. Prigogine, I.: From being to becoming, Ch.7. W.H.Freeman and Company, New York (1984)Google Scholar
  25. Sugawara, K., Sano, M.: Cooperative acceleration of task performance: foraging behaviour of multi-robot system. Physica D (100), 343–354 (1997)Google Scholar
  26. Schweitzer, F.: Brownian agents and active particles. Springer, Berlin (2003)Google Scholar
  27. Shimizu, M., Kawakatsu, T., Ishiguro, A.: Coherent swarming through the local interaction by exploiting simulation techniques for many particle systems(in Japanese). Trans. SICE 41–2, 126–134 (2005)CrossRefGoogle Scholar
  28. Steinbrecher, T., Joung, I., Case, D.A.: Soft-core potentials in thermodynamic integration: comparing one- and two-step transformations. J. Comput. Chem. 32(15), 3253–3263 (2011)CrossRefGoogle Scholar
  29. Smith, J.A., Martin, A.M.: Comparison of hard-core and soft-core potentials for modelling flocking in free space. arXiv:0905.2260v1 (2009)
  30. Uhlenbeck, G.E., Ford, G.: Lectures in Statistical Physics. Am. Math. Soc. (1963)Google Scholar
  31. Yamauchi, B.: Frontier-Based Exploration Using Multiple Robots Autonomous Agents 98, 47–53 (1998)Google Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.Robotics Industry Development CouncilHiroshimaJapan

Personalised recommendations