Skip to main content

Carbon Nanotube Quantum Nanomemory

  • Chapter
  • First Online:
Frontiers of Graphene and Carbon Nanotubes

Abstract

Single-charge memory operated at room temperature was fabricated with single-walled carbon nanotube (SWNT) transistor surrounded by SiNx/Al2O3 double-gate insulator layers, which demonstrates discrete hysteresis characteristics by single-hole transfers. The present memory has the short top gate length of 10 nm fabricated by a self-assemble process which contributes to the room temperature operation. Owing to the strong concentrated electric field due to the top gate electrode which surrounds the SWNT channel with small diameter of 1 nm, Fowler-Nordheim tunneling becomes easy to occur, and the device achieved writing voltage of as small as 0.16 V, which is more than 100 times smaller than the present conventional planer-type flash memory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kitamura T, Kawata M, Honma I, Yamamoto I, Nishimoto S, Oyama K (1998) A low voltage operating flash memory cell with high coupling ratio using horned floating gate with fine HSG. Symp VLSl Tech Dig 104–105

    Google Scholar 

  2. Peng HB, Hughes ME, Golovchenkoa J (2006) Room-temperature single charge sensitivity in carbon nanotube field-effect transistors. Appl Phys Lett 89:243502

    Article  Google Scholar 

  3. Kamimura T, Ohono Y, Matsumoto K (2009) Carbon nanotube Fabry-Pert device for detection of multiple single charge transitions. Jpn J Appl Phys 48:025001

    Article  Google Scholar 

  4. Kojima A, Hyon CK, Kamimura T, Maeda M, Matsumoto K (2005) Protein sensor using carbon nanotube field effect transistor. Jpn J Appl Phys 44:1596–1598

    Article  Google Scholar 

  5. Okuda S, Okamoto S, Ohno Y, Maehashi K, Inoue K, Matsumoto K (2012) Horizontally aligned carbon nanotubes on a quartz substrate for chemical and biological sensing. J Phys Chem C 116:19490–19495

    Article  Google Scholar 

  6. Abe M, Ohno Y, Matsumoto K (2012) Schottky barrier control gate-type carbon nanotube field-effect transistor biosensors. J Appl Phys 111:034506

    Article  Google Scholar 

  7. Yeo S, Choi C, Jang CW, Lee S, Jhon YM (2013) Sensitivity enhancement of carbon nanotube based ammonium ion sensors through surface modification by using oxygen plasma treatment. Appl Phys Lett 102:073108

    Article  Google Scholar 

  8. Hu ZL, Martensson G, Murugesan M, Fu Y, Guo X, Liu J (2012) Detecting single molecules inside a carbon nanotube to control molecular sequences using inertia trapping phenomenon. Appl Phys Lett 101:133105

    Article  Google Scholar 

  9. Heinze S, Tersoff J, Martel R, Derycke V, Appenzeller J, Avouris P (2002) Carbon nanotubes as Schottky barrier transistors. Phys Rev Lett 89:106801

    Article  Google Scholar 

  10. Gruneis A, Esplandiu MJ, Garcia-Sanchez J, Bachtold A (2007) Counting and manipulating electrons using a carbon nanotube transistor. Nano Lett 7:3766–3769

    Article  Google Scholar 

  11. Ohori T, Ohno Y, Maehashi K, Inoue K, Hayashi Y, Matsumoto K (2011) Quantized characteristics in carbon nanotube-based single-hole memory with a floating nanodot gate. Appl Phys Lett 98:223101

    Article  Google Scholar 

  12. Guo L, Leobandung E, Chou SY (1997) A silicon single-electron transistor memory operating at room temperature. Science 275:649

    Article  Google Scholar 

  13. Davis JR (1980) Instabilities in MOS devices. Gorden and Breach, New York

    Google Scholar 

  14. Yano K, Ishii T, Hashimoto T, Kobayashi T, Murai F (1994) Room-temperature single-electron memory. IEEE Trans Electron Devices 41:1628–1638

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takafumi Kamimura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Kamimura, T., Ohno, Y., Maehashi, K., Matsumoto, K. (2015). Carbon Nanotube Quantum Nanomemory. In: Matsumoto, K. (eds) Frontiers of Graphene and Carbon Nanotubes. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55372-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55372-4_15

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55371-7

  • Online ISBN: 978-4-431-55372-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics