Advertisement

Methodology of Seismic Tomography

  • Dapeng ZhaoEmail author
Chapter
Part of the Springer Geophysics book series (SPRINGERGEOPHYS)

Abstract

In this chapter, we first introduce the basic principles of seismic tomography and discuss the common features and differences between seismic tomography and the medical CT-scan. Considering the fact that many different kinds of tomographic studies have been made and a large number of tomography-related technical terms are used in the literature, we present a classification of seismic tomography. Then we explain the meaning of multiscale seismic tomography, and discuss how to interpret the obtained tomographic images. Finally, the scope and contents of this book are outlined.

Keywords

Seismic tomography Model parameterization Ray tracing Inversion Resolution Damping parameter 

References

  1. Aki, K., Lee, W.: Determination of three-dimensional velocity anomalies under a seismic array using first P arrival times from local earthquakes: 1. A homogeneous initial model. J. Geophys. Res. 81, 4381–4399 (1976)Google Scholar
  2. Aki, K., Christoffersson, A., Husehye, E.: Determination of the three-dimensional seismic structure of the lithosphere. J. Geophys. Res. 82, 277–296 (1977)Google Scholar
  3. Aster, R., Borchers, B., Thurber, C.: Parameter Estimation and Inverse Problems, p. 301. Elsevier Academic, Burlington (2005)Google Scholar
  4. Backus, G.: Possible forms of seismic anisotropy of uppermost mantle under oceans. J. Geophys. Res. 70, 3429–3439 (1965)Google Scholar
  5. Backus, G., Gilbert, F.: The resolving power of gross Earth data. Geophys. J.R. Astron. Soc. 16, 169–205 (1968)Google Scholar
  6. Ballard, S., Hipp, J., Young, C.: Efficient and accurate calculation of ray theory seismic travel time though variable resolution 3D earth models. Seismol. Res. Lett. 80, 990–1000 (2009)Google Scholar
  7. Barclay, A., Toomey, D., Solomon, S.: Seismic structure and crustal magmatism at the Mid-Atlantic Ridge, 35 degrees N. J. Geophys. Res. 103, 17827–17844 (1998)Google Scholar
  8. Boschi, L., Becker, T., Soldati, G., Dziewonski, A.: On the relevance of born theory in global seismic tomography. Geophys. Res. Lett. 33, L06302 (2006)Google Scholar
  9. Brune, J.: Tectonic stress and the spectra of seismic shear waves from earthquakes. J. Geophys. Res. 75, 4997–5009 (1970)Google Scholar
  10. Campillo, M., Paul, A.: Long-range correlations in the diffuse seismic coda. Science 299, 547–549 (2003)Google Scholar
  11. Cerveny, V., Molotkov, A., Psencik, I.: Ray Method in Seismology. University of Karlova, Prague (1977)Google Scholar
  12. Chou, W., Booker, R.: A Backus-Gilbert approach to inversion of travel-time data for three-dimensional velocity structure. Geophys. J.R. Astron. Soc. 59, 325–344 (1979)Google Scholar
  13. Christensen, N.I.: The magnitude, symmetry and origin of upper mantle anisotropy based on fabric analyses of ultramafic tectonites. Geophys. J. R. Astr. Soc. 76, 89–111 (1984)Google Scholar
  14. Christensen, N.I.: Poisson’s ratio and crustal seismology. J. Geophys. Res. 101, 3139–3156 (1996)Google Scholar
  15. Christensen, N.I.: Serpentinites, peridotites, and seismology. Int. Geol. Rev. 46, 795–816 (2004)Google Scholar
  16. Cormier, V.: Seismic attenuation: observation and measurement. In: James, D.E. (ed.) The Encyclopedia of Solid Earth Geophysics, pp. 1005–1017. Van Nostrand Reinhold Company, New York (1989)Google Scholar
  17. Coultrip, R.: High-accuracy wavefront tracing traveltime calculation. Geophysics 58, 284–292 (1993)Google Scholar
  18. Crampin, S.: Effective anisotropic constants for wave-propagation through cracked solids. Geophys. J. R. Astron. Soc. 76, 135–145 (1984)Google Scholar
  19. Deal, M., Nolet, G.: Comment on "Estimation of resolution and covariance for large matrix inversions" by J. Zhang and G. McMechan. Geophys. J. Int. 127, 245–250 (1996)Google Scholar
  20. Dziewonski, A.: Mapping the lower mantle: determination of lateral heterogeneity in P velocity up to degree and order 6. J. Geophys. Res. 89, 5929–5952 (1984)Google Scholar
  21. Eberhart-Phillips, D.: Three-dimensional velocity structure in Northern California Coast Ranges from inversion of local earthquake arrival times. Bull. Seismol. Soc. Am. 76, 1025–1052 (1986)Google Scholar
  22. Eberhart-Phillips, D., Chadwick, M.: Three-dimensional attenuation model of the shallow Hikurangi subduction zone in the Raukumara Peninsula, New Zealand. J. Geophys. Res. 107, 2033 (2002)Google Scholar
  23. Eberhart-Phillips, D., Henderson, C.: Including anisotropy in 3-D velocity inversion and application to Marlborough, New Zealand. Geophys. J. Int. 156, 237–254 (2004)Google Scholar
  24. Eberhart-Phillips, D., Chadwick, M., Bannister, S.: Three-dimensional attenuation structure of central and southern South Island, New Zealand, from local earthquakes. J. Geophys. Res. 113, B05308 (2008)Google Scholar
  25. Engdahl, E., Lee, W.: Relocation of local earthquakes by seismic ray tracing. J. Geophys. Res. 81, 4400–4406 (1976)Google Scholar
  26. Fichtner, A., Kennett, B., Igel, H., Bunge, H.: Full waveform tomography for radially anisotropic structure: new insights into present and past states of the Australasian upper mantle. Earth planet. Sci. Lett. 290, 270–280 (2010)Google Scholar
  27. Fichtner, A., Trampert, J., Cupillard, P. et al.: Multiscale full waveform inversion. Geophys. J. Int. 194, 534–556 (2013)Google Scholar
  28. Fishwick, S.: Gradient maps: A tool in the interpretation of tomographic images. Phys. Earth Planet. Inter. 156, 152–157 (2006)Google Scholar
  29. Flanagan, M., Shearer, P.: Global mapping of topography on transition zone velocity discontinuities by stacking SS precursors. J. Geophys. Res. 103, 2673–2692 (1998)Google Scholar
  30. Fouch, M., Rondenay, S.: Seismic anisotropy beneath stable continental interiors. Phys. Earth Planet. Inter. 158, 292–320 (2006)Google Scholar
  31. Frankel, A., Wennerberg, L.: Microearthquake spectra from the Anza, California, seismic network: Site response and source scaling. Bull. Seismol. Soc. Am. 79, 581–609 (1989)Google Scholar
  32. Gupta, S., Zhao, D., Ikeda, M., Ueki, S., Rai, S.: Crustal tomography under the Median Tectonic Line in Southwest Japan using P and PmP data. J. Asian Earth Sci. 35, 377–390 (2009)Google Scholar
  33. Hashida, T.: Three-dimensional seismic attenuation structure beneath the Japanese Islands and its tectonic and thermal implications. Tectonophysics 159, 163–180 (1989)Google Scholar
  34. Hearn, T.: Anisotropic Pn tomography in the western United States. J. Geophys. Res. 101, 8403–8414 (1996)Google Scholar
  35. Herman, G.: Image Reconstruction from Projections: The Fundamentals of Computerized Tomography. Academic Press, San Diego (1980)Google Scholar
  36. Hess, H.: Seismic anisotropy of uppermost mantle under oceans. Nature 203, 629–631 (1964)Google Scholar
  37. Hirahara, K.: Inversion method of body wave data for three-dimensional Earth structure. J. Seismol. Soc. Japan 43, 291–306 (1990)Google Scholar
  38. Horie, A.: Three-dimensional seismic velocity structure beneath the Kanto district by inversion of P-wave arrival times. Ph.D. thesis, University of Tokyo (1980)Google Scholar
  39. Horiuchi, S., Ishii, H., Takagi, A.: Two-dimensional depth structure of the crust beneath the Tohoku district, the northeastern Japan arc. I. Method and Conrad discontinuity. J. Phys. Earth 30, 47–69 (1982a)Google Scholar
  40. Horiuchi, S., Yamamoto, A., Ueki, S.: Two-dimensional depth structure of the crust beneath the Tohoku district, the northeastern Japan arc. II. Moho discontinuity and P-wave velocity. J. Phys. Earth 30, 71–86 (1982b)Google Scholar
  41. Huang, J., Zhao, D.: Crustal heterogeneity and seismotectonics of the region around Beijing, China. Tectonophysics 385, 159–180 (2004)Google Scholar
  42. Huang, Z., Zhao, D.: Mechanism of the 2011 Tohoku-oki earthquake (Mw 9.0) and tsunami: insight from seismic tomography. J. Asian Earth Sci. 70, 160–168 (2013)Google Scholar
  43. Huang, Z., Zhao, D., Wang, L.: Seismic heterogeneity and anisotropy of the Honshu arc from the Japan Trench to the Japan Sea. Geophys. J. Int. 184, 1428–1444 (2011a)Google Scholar
  44. Huang, Z., Zhao, D., Wang, L.: Shear-wave anisotropy in the crust, mantle wedge and the subducting Pacific slab under Northeast Japan. Geochem. Geophys. Geosyst. 12, Q01002 (2011b)Google Scholar
  45. Huang, Z., Zhao, D., Wang, L.: Frequency-dependent shear-wave splitting and multilayer anisotropy in Northeast Japan. Geophys. Res. Lett. 38, L08302 (2011c)Google Scholar
  46. Huang, G., Bai, C., Greenhalgh, S.: Fast and accurate global multiphase arrival tracking: the irregular shortest-path method in a 3-D spherical earth model. Geophys. J. Int. 194, 1878–1892 (2013)Google Scholar
  47. Humphreys, E., Clayton, R.: Adaptation of back projection tomography to seismic travel time problems. J. Geophys. Res. 93, 1073–1085 (1988)Google Scholar
  48. Hung, S., Shen, Y., Chiao, L.: Imaging seismic velocity structure beneath the Iceland hotspot: a finite frequency approach. J. Geophys. Res. 109, B08305 (2004)Google Scholar
  49. Imanishi, K., Ellsworth, W.: Source scaling relationships of microearthquakes at Parkfield, CA, determined using the SAFOD pilot hole seismic array. In: Abercrombie, R. et al. (eds.) Earthquakes: Radiated Energy and the Physics of Earthquake Faulting. AGU, Washington, D.C. (2006) (Geophys. Monogr. Ser., vol. 170, pp. 81–90)Google Scholar
  50. Inoue, H., Fukao, Y., Tanabe, K., Ogata, Y.: Whole mantle P wave travel time tomography. Phys. Earth Planet. Inter. 59, 294–328 (1990)Google Scholar
  51. Ishise, M., Kawakatsu, K., Shiomi, K.: Anisotropic velocity structure under the Japan Islands using Hi-net arrival-time data. (1) Reexamination of the 3-D anisotropic velocity structure beneath Northeast Japan. Program and Abstracts of the Annual Meeting of Seismological Society of Japan, Hakodate, Japan, B12-02 (2012)Google Scholar
  52. Iyer, H., Hirahara, K. (Eds.): Seismic Tomography: Theory and Practice, p. 842. Chapman & Hall, Boca Raton (1993)Google Scholar
  53. Jacob, K.: Three-dimensional seismic ray tracing in a laterally heterogeneous spherical Earth. J. Geophys. Res. 75, 6675–6689 (1970)Google Scholar
  54. Julia, J., Ammon, C., Herrmann, R., Correig, A.: Joint inversion of receiver function and surface wave dispersion observations. Geophys. J. Int. 143, 99–112 (2000)Google Scholar
  55. Julian, B., Gubbins, D.: Three-dimensional seismic ray tracing. J. Geophys. 43, 95–113 (1977)Google Scholar
  56. Kamiya, S., Kobayashi, Y.: Seismological evidence for the existence of serpentinized wedge mantle. Geophys. Res. Lett. 27, 819–822 (2000)Google Scholar
  57. Kao, H., Behr, Y., Currie, C. et al.: Ambient seismic noise tomography of Canada and adjacent regions: part I. Crustal structures. J. Geophys. Res. 118, 5865–5887 (2013)Google Scholar
  58. Karato, S.: Importance of anelasticity in the interpretation of seismic tomography. Geophys. Res. Lett. 20, 1623–1626 (1993)Google Scholar
  59. Kennett, B., Engdahl, E.: Travel times for global earthquake location and phase identification. Geophys. J. Int. 105, 426–465 (1991)Google Scholar
  60. Kennett, B., Widiyantoro, S., van der Hilst, R.: Joint seismic tomography for bulk sound and shear wave speed in the Earth’s mantle. J. Geophys. Res. 103, 12469–12493 (1998)Google Scholar
  61. Ko, Y., Kuo, B., Hung, S.: Robust determination of earthquake source parameters and mantle attenuation. J. Geophys. Res. 117, B04304 (2012)Google Scholar
  62. Koketsu, K., Sekine, S.: Pseudo-bending method for three-dimensional seismic ray tracing in a spherical earth with discontinuities. Geophys. J. Int. 132, 339–346 (1998)Google Scholar
  63. Lees, J., Crosson, R.: Tomographic inversion for three-dimensional velocity structure at Mount St. Helens using earthquake data. J. Geophys. Res. 94, 5716–5729 (1989)Google Scholar
  64. Lees, J., VanDecar, J.: Seismic tomography constrained by Bouguer gravity anomalies: applications in Western Washington. Pure Appl. Geophys. 135, 31–52 (1991)Google Scholar
  65. Lei, J., Zhao, D., Su, Y.: Insight into the origin of the Tengchong intraplate volcano and seismotectonics in southwest China from local and teleseismic data. J. Geophys. Res. 114, B05302 (2009)Google Scholar
  66. Lin, F., Moschetti, M., Ritzwoller, M.: Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and love wave phase velocity maps. Geophys. J. Int. 173, 281–298 (2008)Google Scholar
  67. Liu, X., Zhao, D., Li, S.: Seismic heterogeneity and anisotropy of the southern Kuril arc: Insight into megathrust earthquakes. Geophys. J. Int. 194, 1069–1090 (2013)Google Scholar
  68. Liu, X., Zhao, D., Li, S.: Seismic attenuation tomography of the Northeast Japan arc: Insight into the 2011 Tohoku earthquake (Mw 9.0) and subduction dynamics. J. Geophys. Res. 119, 1094–1118 (2014)Google Scholar
  69. Long, M.: Constraints on subduction geodynamics from seismic anisotropy. Rev. Geophys. 51, 76–112 (2013)Google Scholar
  70. Masters, G., Laske, G., Bolton, H., Dziewonski, A.: The relative behavior of shear velocity, bulk sound speed, and compressional velocity in the mantle: implications for chemical and thermal structure. In: Karato, S., Forte, A., Liebermann, R., Master, G., Stixrude, L. (eds.) Earth’s Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scale, pp. 63–87. AGU Monograph, Washington D.C. (2000).Google Scholar
  71. Maupin, V., Park, J.: Theory and Observations-Wave Propagation in Anisotropic Media, in Treatise on Geophysics, pp. 289–321, Schubert, G. (Ed.), Elsevier, Amsterdam (2007)Google Scholar
  72. Mayeda, K., Malagnini, L., Walter, W.: A new spectral ratio method using narrow band coda envelopes: evidence for non-self-similarity in the hector mine sequence. Geophys. Res. Lett. 34, L11303 (2007)Google Scholar
  73. Megnin, C., Romanowicz, B.: The three-dimensional shear velocity structure of the mantle from the inversion of body, surface and higher-mode waveforms. Geophys. J. Int. 143, 709–728 (2000)Google Scholar
  74. Menke, W.: Geophysical Data Analysis: Discrete Inverse Theory Third edition. Elsevier (2012)Google Scholar
  75. Mishra, O.P., Zhao, D.: Crack density, saturation rate and porosity at the 2001 Bhuj, India, earthquake hypocenter: a fluid driven earthquake? Earth Planet. Sci. Lett. 212, 393–405 (2003)Google Scholar
  76. Miyatake, T.: On the travel time calculation by using approximate ray tracing in a laterally heterogeneous velocity structure. J. Seismol. Soc. Japan 40, 99–110 (1987)Google Scholar
  77. Montelli, R., Nolet, G., Master, G., Dahlen, F., Hung, H.: Global P and PP traveltime tomography: rays versus waves. Geophys. J. Int. 158, 637–654 (2004)Google Scholar
  78. Mooney, W., Laske, G., Masters, G.: CRUST 5.1: A global crustal model at 5 × 5. J. Geophys. Res. 103, 727–747 (1998)Google Scholar
  79. Moorkamp, M., Jones, A., Fishwick, S.: Joint inversion of receiver functions, surface wave dispersion, and magnetotelluric data. J. Geophys. Res. 115, B04318 (2010)Google Scholar
  80. Moser, T.: Shortest path calculation of seismic rays. Geophysics 56, 59–67 (1991)Google Scholar
  81. Nakajima, J., Takei, Y., Hasegawa, A.: Quantitative analysis of the inclined low-velocity zone in the mantle wedge of northeastern Japan: a systematic change of melt-filled pore shapes with depth and its implications for melt migration. Earth Planet. Sci. Lett. 234, 59–70 (2005)Google Scholar
  82. Neele, F., VanDecar, J., Snieder, R.: The use of P wave amplitude data in a joint inversion with travel times for upper mantle velocity structure. J. Geophys. Res. 98, 12033–12054 (1993)Google Scholar
  83. Nettles, M. Dziewonski, A: Radially anisotropic shear velocity structure of the upper mantle globally and beneath North America. J. Geophys. Res. 113, B02303 (2008)Google Scholar
  84. Nolet, G.: Solving or resolving inadequate and noisy tomographic systems. J. Comput. Phys. 61, 463–82 (1985)Google Scholar
  85. Nolet, G. (Ed.): Seismic Tomography: With Applications in Global Seismology and Exploration Geophysics, p. 386. D. Reidel Publishing Company (1987)Google Scholar
  86. Nolet, G.: A Breviary of Seismic Tomography: Imaging the Interior of the Earth and Sun, p. 344. Cambridge University Press (2008)Google Scholar
  87. Nolet, G., Montelli, R., Virieux, J.: Explicit, approximate expressions for the resolution and a posteriori covariance of massive tomographic systems. Geophys. J. Int. 138, 36–44 (1999)Google Scholar
  88. O’Connell, R., Budiansky, B.: Seismic velocities in dry and saturated cracked solids. J. Geophys. Res. 79, 5412–5426 (1974)Google Scholar
  89. Paige, C., Saunders, M.: LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Softw. 8, 43–71 (1982)Google Scholar
  90. Park, J., Yu, Y.: Seismic determination of elastic anisotropy and mantle flow. Science 261, 1159–1162 (1993)Google Scholar
  91. Pavlis, G., Booker, J.: The mixed discrete continuous inverse problem: application to the simultaneous determination of earthquake hypocenters and velocity structure. J. Geophys. Res. 85, 4801–4810 (1980)Google Scholar
  92. Pereyra, V., Lee, W., Keller, H.: Solving two-point seismic ray-tracing problems in a heterogeneous medium, 1. A general adaptive finite difference method. Bull. Seismol. Soc. Am. 70, 79–99 (1980)Google Scholar
  93. Podvin, P., Lecomte, I.: Finite-difference computation of traveltimes in very contrasted velocity models: A massively parallel approach and its associated tools. Geophys. J. Int. 105, 271–284 (1991)Google Scholar
  94. Raitt, R., Shor, G., Francis, T., Morris, G.: Anisotropy of Pacific upper mantle. J. Geophys. Res. 74, 3095–3109 (1969)Google Scholar
  95. Sadeghi, H., Suzuki, S., Takenaka, H.: A two-point, three-dimensional seismic ray tracing using genetic algorithms. Phys. Earth Planet. Inter. 113, 355–365 (1999)Google Scholar
  96. Savage, M.K.: Seismic anisotropy and mantle deformation: what have we learned from shear wave splitting? Rev. Geophys. 37, 65–106 (1999)Google Scholar
  97. Scherbaum, F.: Combined inversion for the three-dimensional Q structure and source parameters using microearthquake spectra. J. Geophys. Res. 95, 12423–12438 (1990)Google Scholar
  98. Shapiro, N., Campillo, M., Stehly, L., Ritzwoller, M.: High-resolution surface wave tomography from ambient seismic noise. Science 307, 1615–1618 (2005)Google Scholar
  99. Shen, W., Ritzwoller, M., Schulte-Pelkum, V., Lin, F.: Joint inversion of surface wave dispersion and receiver functions: a Bayesian Monte-Carlo approach. Geophys. J. Int. 192, 807–836 (2013)Google Scholar
  100. Shito, A., Shibutan, T.: Nature of heterogeneity of the upper mantle beneath the northern Philippine Sea as inferred from attenuation and velocity tomography. Phys. Earth Planet. Inter. 140, 331–341 (2003)Google Scholar
  101. Silver, P.G.: Seismic anisotropy beneath the continents: probing the depths of geology. Ann. Rev. Earth Planet. Sci. 24, 385–432 (1996)Google Scholar
  102. Spakman, W., Nolet, G.: Imaging algorithms, accuracy and resolution in delay time tomography. In Vlaar N. et al. (eds.): Mathematical Geophysics, pp. 155–87. D. Reidel, Norwell (1988)Google Scholar
  103. Spencer, C., Gubbins, D.: Travel-time inversion for simultaneous earthquake location and velocity structure determination in laterally varying media. Geophys. J.R. Astron. Soc. 63, 95–116 (1980)Google Scholar
  104. Suetsugu, D., Inoue, T., Obayashi, M., Yamada, A. et al.: Depths of the 410 km and 660 km discontinuities in and around the stagnant slab beneath the Philippine Sea: is water stored in the stagnant slab? Phys. Earth Planet. Inter. 183, 270–279 (2010)Google Scholar
  105. Takei, Y.: Effect of pore geometry on VP /VS: from equilibrium geometry to crack. J. Geophys. Res. 107, doi:10.1029/2001JB000522 (2002)Google Scholar
  106. Tarantola, A.: Inverse Problem Theory and Methods for Model Parameter Estimation. Society for Industrial and Applied Mathematics (2005)Google Scholar
  107. Thurber, C.: Earthquake locations and three-dimensional crustal structure in the Coyote Lake area, central California. J. Geophys. Res. 88, 8226–8236 (1983)Google Scholar
  108. Thurber, C., Aki, K.: Three-dimensional seismic imaging. Ann. Rev. Earth Planet. Sci. 15, 115–139 (1987)Google Scholar
  109. Thurber, C., Ellsworth, W.: Rapid solution of ray tracing problems in heterogeneous media. Bull. Seismol. Soc. Am. 70, 1137–1148 (1980)Google Scholar
  110. Tian, Y., Liu, L.: Geophysical properties and seismotectonics of the Tohoku forearc region. J. Asian Earth Sci. 64, 235–244 (2013)Google Scholar
  111. Tian, Y., Zhao, D.: Seismic anisotropy and heterogeneity in the Alaska subduction zone. Geophys. J. Int. 190, 629–649 (2012)Google Scholar
  112. Tichelaar, B., Ruff, L.: How good are our best models? EOS, Trans. Am. Geophys. Un. 70, 593–606 (1989)Google Scholar
  113. Um, J., Thurber, C.: A fast algorithm for two-point seismic ray tracing. Bull. Seismol. Soc. Am. 77, 972–986 (1987)Google Scholar
  114. Van der Hilst, R., de Hoop, M.: Banana-doughnut kernels and mantle tomography. Geophys. J. Int. 163, 956–961 (2005)Google Scholar
  115. van der Sluis, A., van der Vorst, H.: Numerical solution of large, sparse linear algebraic systems arising from tomographic problems. In Nolet, G. (ed.) Seismic Tomography, pp. 49-84. D. Reidel Publishing Company (1987)Google Scholar
  116. Vasco, D., Johnson, L., Pulliam, R.: Lateral variations in mantle velocity structure and discontinuities determined from P, PP, S, SS, and SS-SdS travel time residuals. J. Geophys. Res. 100, 24037–24059 (1995)Google Scholar
  117. Vasco, D., Johnson, L., Marques, O.: Resolution, uncertainty, and whole Earth tomography. J. Geophys. Res. 108, 2022 (2003)Google Scholar
  118. Vidale, J. 1988. Finite-difference traveltime calculation. Bull. Seismol. Soc. Am. 78, 2062–2076.Google Scholar
  119. Vidale, J.: Finite-difference calculation of traveltime in three dimensions. Geophysics 55, 521–526 (1990)Google Scholar
  120. Wagner, L., Beck, S., Zandt, G.: Upper mantle structure in the south central Chilean subduction zone (30° to 36°S). J. Geophys. Res. 110, B01308 (2005)Google Scholar
  121. Waldhauser, F., Ellsworth, W.: A double-difference earthquake location algorithm: Method and application to the northern Hayward fault. Bull. Seism. Soc. Am. 90, 1353–1368 (2000)Google Scholar
  122. Wang, Z., Zhao, D.: Suboceanic earthquake location and seismic structure in the Kanto district, central Japan. Earth Planet. Sci. Lett. 241, 789–803 (2006)Google Scholar
  123. Wang, J., Zhao, D.: P-wave anisotropic tomography beneath Northeast Japan. Phys. Earth planet. Inter. 170, 115–133 (2008)Google Scholar
  124. Wang, J., Zhao, D.: P wave anisotropic tomography of the Nankai subduction zone in Southwest Japan. Geochem. Geophys. Geosyst. 13, Q05017 (2012)Google Scholar
  125. Wang, J., Zhao, D.: P-wave tomography for 3-D radial and azimuthal anisotropy of Tohoku and Kyushu subduction zones. Geophys. J. Int. 193, 1166–1181 (2013)Google Scholar
  126. Wang, J., Wu, H., Zhao, D.: P wave radial anisotropy tomography of the upper mantle beneath the North China Craton. Geochem. Geophys. Geosyst. 15, 2195–2210 (2014)Google Scholar
  127. Wesson, R.: Travel-time inversion for laterally inhomogeneous crustal velocity models. Bull. Seismol. Soc. Am. 61, 729–746 (1971)Google Scholar
  128. West, M., Gao, W., Grand, S.: A simple approach to the joint inversion of seismic body and surface waves applied to the southwest U.S. Geophys. Res. Lett. 31, L15615 (2004)Google Scholar
  129. Wiggins, R.: The general linear inverse problem: implication of surface waves and free oscillations for Earth structure. Rev. Geophys. Space Phys. 10, 251–285 (1972)Google Scholar
  130. Xia, S., Zhao, D., Qiu, X. et al.: Mapping the crustal structure under active volcanoes in central Tohoku, Japan using P and PmP data. Geophys. Res. Lett. 34, L10309 (2007)Google Scholar
  131. Yamada, A., Zhao, D., Inoue, T., Suetsugu, D., Obayashi, M.: Seismological evidence for compositional variations at the base of the mantle transition zone under Japan Islands. Gondwana Res. 16, 482–490 (2009)Google Scholar
  132. Yao, Z.S., Roberts, R., Tryggvason, A.: Calculating resolution and covariance matrices for seismic tomography with the LSQR method. Geophys. J. Int. 138, 886–894 (1999)Google Scholar
  133. Yuan, H., Romanowicz, B., Fischer, K., Abt, D.: 3-D shear wave radially and azimuthally anisotropic velocity model of the North American upper mantle. Geophys. J. Int. 184, 1237–1260 (2011)Google Scholar
  134. Zhang, J., McMechan, G.: Estimation of resolution and covariance for large matrix inversions. Geophys. J. Int. 121, 409–426 (1995)Google Scholar
  135. Zhang, H., Thurber, C.: Double-difference tomography: the method and its application to the Hayward fault, California. Bull. Seismol. Soc. Am. 93, 1875–1889 (2003)Google Scholar
  136. Zhang, H., Thurber, C.: Estimating the model resolution matrix for large seismic tomography problems based on Lanczos bidiagonalization with partial reorthogonalization. Geophys. J. Int. 170, 337–345 (2007)Google Scholar
  137. Zhao, D.: A tomographic study of seismic velocity structure in the Japan Islands. Ph.D. thesis, Tohoku University (1991)Google Scholar
  138. Zhao, D.: New advances of seismic tomography and its applications to subduction zones and earthquake fault zones. Island Arc 10, 68–84 (2001a)Google Scholar
  139. Zhao, D.: Seismic structure and origin of hotspots and mantle plumes. Earth Planet. Sci. Lett. 192, 251–265 (2001b)Google Scholar
  140. Zhao, D.: Global tomographic images of mantle plumes and subducting slabs: Insight into deep Earth dynamics. Phys. Earth Planet. Inter. 146, 3–34 (2004)Google Scholar
  141. Zhao, D.: Multiscale seismic tomography and mantle dynamics. Gondwana Res. 15, 297–323 (2009)Google Scholar
  142. Zhao, D.: Tomography and dynamics of Western-Pacific subduction zones. Monogr. Environ. Earth Planets 1, 1–70 (2012)Google Scholar
  143. Zhao, D., Lei, J.: Seismic ray path variations in a 3-D global velocity model. Phys. Earth Planet. Inter. 141, 153–166 (2004)Google Scholar
  144. Zhao, D., Mizuno, T.: Crack density and saturation rate in the 1995 Kobe earthquake region. Geophys. Res. Lett. 26, 3213–3216 (1999)Google Scholar
  145. Zhao, D., Horiuchi, S., Hasegawa, A.: 3-D seismic velocity structure of the crust and uppermost mantle in the northeastern Japan arc. Tectonophysics 181, 135–149 (1990)Google Scholar
  146. Zhao, D., Hasegawa, A., Horiuchi, S.: Tomographic imaging of P and S wave velocity structure beneath northeastern Japan. J. Geophys. Res. 97, 19909–19928 (1992)Google Scholar
  147. Zhao, D., Kanamori, H., Negishi, H., Wiens, D.: Tomography of the source area of the 1995 Kobe earthquake: Evidence for fluids at the hypocenter? Science 274, 1891–1894 (1996)Google Scholar
  148. Zhao, D., Mishra, O.P., Sanda, R.: Influence of fluids and magma on earthquakes: seismological evidence. Phys. Earth Planet. Inter. 132, 249–267 (2002)Google Scholar
  149. Zhao, D., Todo, S., Lei, J.: Local earthquake reflection tomography of the Landers aftershock area. Earth Planet. Sci. Lett. 235, 623–631 (2005)Google Scholar
  150. Zhao, D., Wang, Z., Umino, N., Hasegawa, A.: Tomographic imaging outside a seismic network: Application to the northeast Japan arc. Bull. Seismol. Soc. Am. 97, 1121–1132 (2007)Google Scholar
  151. Zhao, D., Wang, Z., Umino, N., Hasegawa, A.: Mapping the mantle wedge and interplate thrust zone of the northeast Japan arc. Tectonophysics 467, 89–106 (2009)Google Scholar
  152. Zhao, D., Huang, Z., Umino. N., Hasegawa, A., Kanamori, H.: Structural heterogeneity in the megathrust zone and mechanism of the 2011 Tohoku-oki earthquake (Mw 9.0). Geophys. Res. Lett. 38, L17308 (2011)Google Scholar
  153. Zhao, D., Yanada, T., Hasegawa, A., Umino, N., Wei, W.: Imaging the subducting slabs and mantle upwelling under the Japan Islands. Geophys. J. Int. 190, 816–828 (2012)Google Scholar
  154. Zhao, D., Yamamoto, Y., Yanada, T.: Global mantle heterogeneity and its influence on teleseismic regional tomography. Gondwana Res. 23, 595–616 (2013)Google Scholar
  155. Zheng, Y., Shen, W., Zhou, L., Yang, Y., Xie, Z., Ritzwoller, M.: Crust and uppermost mantle beneath the North China Craton, northeastern China, and the Sea of Japan from ambient noise tomography. J. Geophys. Res. 116, B12312 (2011)Google Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  1. 1.Tohoku UniversitySendaiJapan

Personalised recommendations