Skip to main content

Networks, Random Graphs and Percolation

Part of the SpringerBriefs in Statistics book series (JSSRES)

Abstract

The theory of random graphs goes back to the late 1950s when Paul Erdős and Alfréd Rényi introduced the Erdős-Rényi random graph. Since then many models have been developed, and the study of random graph models has become popular for real-life network modelling such as social networks and financial networks. The aim of this overview is to review relevant random graph models for real-life network modelling. Therefore, we analyse their properties in terms of stylised facts of real-life networks.

Keywords

  • Random Graph
  • Real-life Networks
  • Long-range Percolation
  • Site-bond Percolation
  • Small-world Effect

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-4-431-55336-6_4
  • Chapter length: 30 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   39.99
Price excludes VAT (USA)
  • ISBN: 978-4-431-55336-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   54.99
Price excludes VAT (USA)
Fig. 4.1
Fig. 4.2
Fig. 4.3
Fig. 4.4
Fig. 4.5
Fig. 4.6

References

  1. Aizenman, M., Kesten, H., Newman, C.M.: Uniqueness of the infinite cluster and continuity of connectivity functions for short- and long-range percolation. Commun. Math. Phys. 111, 505–532 (1987)

    CrossRef  MathSciNet  MATH  Google Scholar 

  2. Aldous, D.: Brownian excursions, critical random graphs and the multiplicative coalescent. Ann. Probab. 25(2), 812–854 (1997)

    CrossRef  MathSciNet  MATH  Google Scholar 

  3. Amini, H., Cont, R., Minca, A.: Stress testing the resilience of financial networks. Int. J. Theor. Appl. Finance 15(1), 1250,006–1250,020 (2012)

    Google Scholar 

  4. Antal, P., Pisztora, A.: On the chemical distance for supercritical Bernoulli percolation. Ann. Probab. 24(2), 1036–1048 (1996)

    CrossRef  MathSciNet  MATH  Google Scholar 

  5. Benjamini, I., Kesten, H., Peres, Y., Schramm, O.: Geometry of the uniform spanning forest: transition in dimensions 4,8,12. Ann. Math. 160, 465–491 (2004)

    CrossRef  MathSciNet  MATH  Google Scholar 

  6. Berger, N.: Transience, recurrence and critical behavior for long-range percolation. Commun. Math. Phys. 226(3), 531–558 (2002)

    CrossRef  MathSciNet  MATH  Google Scholar 

  7. Berger, N.: A lower bound for the chemical distance in sparse long-range percolation models. arXiv:math/0409021v1 (2008)

  8. Berger, N.: Transience, recurrence and critical behavior for long-range percolation. arXiv:math/0110296v3 (2014)

  9. Biskup, M.: On the scaling of the chemical distance in long-range percolation models. Ann. Probab. 32, 2938–2977 (2004)

    CrossRef  MathSciNet  MATH  Google Scholar 

  10. Bollobás, B.: Random Graphs, 2nd edn. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  11. Broadbent, S.R., Hammersley, J.M.: Percolation processes I. Crystals and mazes. Math. Proc. Cambridge Philos. Soc. 53, 629–641 (1957)

    CrossRef  MathSciNet  MATH  Google Scholar 

  12. Burton, R.M., Keane, M.: Density and uniqueness in percolation. Commun. Math. Phys. 121, 501–505 (1989)

    CrossRef  MathSciNet  MATH  Google Scholar 

  13. Chung, F., Lu, L.: The average distances in random graphs with given expected degrees. Proc. Natl. Acad. Sci. 99, 15879–15882 (2002)

    CrossRef  MathSciNet  MATH  Google Scholar 

  14. Chung, F., Lu, L.: Connected components in random graphs with given expected degree sequences. Ann. Comb. 6(2), 125–145 (2002)

    CrossRef  MathSciNet  MATH  Google Scholar 

  15. Cont, R., Moussa, A., Santos, E.B.: Network structure and systemic risk in banking system. SSRN Server, Manuscript ID 1733528 (2010)

    Google Scholar 

  16. Deijfen, M., van der Hofstad, R., Hooghiemstra, G.: Scale-free percolation. Ann. Inst. Henri Poincaré Probab. Stat. 49(3), 817–838 (2013)

    CrossRef  MathSciNet  MATH  Google Scholar 

  17. Deprez, P., Hazra, R.S., Wüthrich, M.V.: Inhomogeneous long-range percolation for real-life network modeling. Risks 3(1), 1–23 (2015)

    CrossRef  Google Scholar 

  18. Deprez, P., Wüthrich, M.V.: Poisson heterogeneous random-connection model. arXiv:1312.1948 (2013)

  19. Durrett, R.: Random Graph Dynamics. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  20. Erdős, P., Rényi, A.: On random graphs I. Publ. Math. Debrecen 6, 290–297 (1959)

    MathSciNet  MATH  Google Scholar 

  21. Franceschetti, M., Meester, R.: Random Networks for Communication. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  22. Gandolfi, A., Grimmett, G.R., Russo, L.: On the uniqueness of the infinite open cluster in the percolation model. Commun. Math. Phys. 114, 549–552 (1988)

    CrossRef  MATH  Google Scholar 

  23. Gandolfi, A., Keane, M.S., Newman, C.M.: Uniqueness of the infinite component in a random graph with applications to percolation and spin glasses. Probab. Theory Related Fields 92, 511–527 (1992)

    CrossRef  MathSciNet  MATH  Google Scholar 

  24. Grimmett, G.R.: Percolation and disordered systems. In: Bernard, P. (ed.) Lectures on Probability and Statistics, Lecture Notes in Mathematics, vol. 1665, pp. 153–300. Springer, New York (1997)

    Google Scholar 

  25. Grimmett, G.R.: Percolation, 2nd edn. Springer, New York (1999)

    Google Scholar 

  26. van der Hofstad, R.: Random graphs and complex networks. http://www.win.tue.nl/~rhofstad/NotesRGCN2013.pdf (2013). Accessed 22 Apr 2015

  27. van der Hofstad, R., Hooghiemstra, G., Znamenksi, D.: Distances in random graphs with finite mean and infinite variance degrees. Electron. J. Probab. 12, 703–766 (2007)

    CrossRef  MathSciNet  MATH  Google Scholar 

  28. Hurd, T.R., Gleeson, J.P.: A framework for analyzing contagion in banking networks. Preprint (2012)

    Google Scholar 

  29. Kesten, H.: The critical probability of bond percolation on the square lattice equals \(\frac{1}{2}\). Commun. Math. Phys. 74, 41–59 (1980)

    CrossRef  MathSciNet  MATH  Google Scholar 

  30. Kesten, H.: Percolation Theory for Mathematicians. Birkhäuser, Boston (1982)

    Google Scholar 

  31. Meester, R., Roy, R.: Continuum Percolation. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  32. Molloy, M., Reed, B.: A critical point for random graphs with a given degree sequence. Random Struct. Algorithms 6, 161–180 (1995)

    CrossRef  MathSciNet  MATH  Google Scholar 

  33. Newman, C.M., Schulman, L.S.: One dimensional \(1/|j-i|^s\) percolation models: the existence of a transition for \(s\le 2\). Commun. Math. Phys. 104, 547–571 (1986)

    CrossRef  MATH  Google Scholar 

  34. Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E. 64(2), 026,118 (2001)

    Google Scholar 

  35. Newman, M.E.J., Watts, D.J., Strogatz, S.H.: Random graph models of social networks. Proc. Natl. Acad. Sci. 99, 2566–2572 (2002)

    CrossRef  MATH  Google Scholar 

  36. Olhede, S.C., Wolfe, P.J.: Degree-based network models. arXiv:1211.6537v2 (2013)

  37. Schulman, L.S.: Long-range percolation in one dimension. J. Phys. A 16(17), L639–L641 (1983)

    CrossRef  MathSciNet  Google Scholar 

  38. Soramäki, K., Bech, M., Arnold, J., Glass, R., Beyeler, W.: The topology of interbank payment flows. Phys. A 379(1), 317–333 (2007)

    CrossRef  Google Scholar 

  39. Trapman, P.: The growth of the infinite long-range percolation cluster. Ann. Probab. 38(4), 1583–1608 (2010)

    CrossRef  MathSciNet  MATH  Google Scholar 

  40. Watts, D.J.: Six Degrees: The Science of a Connected Age. W. W. Norton, New York (2003)

    Google Scholar 

  41. Wüthrich, M.V.: Non-life insurance: Mathematics and statistics. SSRN Server, Manuscript ID 2319328 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario V. Wüthrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Deprez, P., Wüthrich, M.V. (2015). Networks, Random Graphs and Percolation. In: Peters, G., Matsui, T. (eds) Theoretical Aspects of Spatial-Temporal Modeling. SpringerBriefs in Statistics(). Springer, Tokyo. https://doi.org/10.1007/978-4-431-55336-6_4

Download citation