Abstract
The theory of random graphs goes back to the late 1950s when Paul Erdős and Alfréd Rényi introduced the Erdős-Rényi random graph. Since then many models have been developed, and the study of random graph models has become popular for real-life network modelling such as social networks and financial networks. The aim of this overview is to review relevant random graph models for real-life network modelling. Therefore, we analyse their properties in terms of stylised facts of real-life networks.
Keywords
- Random Graph
- Real-life Networks
- Long-range Percolation
- Site-bond Percolation
- Small-world Effect
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options






References
Aizenman, M., Kesten, H., Newman, C.M.: Uniqueness of the infinite cluster and continuity of connectivity functions for short- and long-range percolation. Commun. Math. Phys. 111, 505–532 (1987)
Aldous, D.: Brownian excursions, critical random graphs and the multiplicative coalescent. Ann. Probab. 25(2), 812–854 (1997)
Amini, H., Cont, R., Minca, A.: Stress testing the resilience of financial networks. Int. J. Theor. Appl. Finance 15(1), 1250,006–1250,020 (2012)
Antal, P., Pisztora, A.: On the chemical distance for supercritical Bernoulli percolation. Ann. Probab. 24(2), 1036–1048 (1996)
Benjamini, I., Kesten, H., Peres, Y., Schramm, O.: Geometry of the uniform spanning forest: transition in dimensions 4,8,12. Ann. Math. 160, 465–491 (2004)
Berger, N.: Transience, recurrence and critical behavior for long-range percolation. Commun. Math. Phys. 226(3), 531–558 (2002)
Berger, N.: A lower bound for the chemical distance in sparse long-range percolation models. arXiv:math/0409021v1 (2008)
Berger, N.: Transience, recurrence and critical behavior for long-range percolation. arXiv:math/0110296v3 (2014)
Biskup, M.: On the scaling of the chemical distance in long-range percolation models. Ann. Probab. 32, 2938–2977 (2004)
Bollobás, B.: Random Graphs, 2nd edn. Cambridge University Press, Cambridge (2001)
Broadbent, S.R., Hammersley, J.M.: Percolation processes I. Crystals and mazes. Math. Proc. Cambridge Philos. Soc. 53, 629–641 (1957)
Burton, R.M., Keane, M.: Density and uniqueness in percolation. Commun. Math. Phys. 121, 501–505 (1989)
Chung, F., Lu, L.: The average distances in random graphs with given expected degrees. Proc. Natl. Acad. Sci. 99, 15879–15882 (2002)
Chung, F., Lu, L.: Connected components in random graphs with given expected degree sequences. Ann. Comb. 6(2), 125–145 (2002)
Cont, R., Moussa, A., Santos, E.B.: Network structure and systemic risk in banking system. SSRN Server, Manuscript ID 1733528 (2010)
Deijfen, M., van der Hofstad, R., Hooghiemstra, G.: Scale-free percolation. Ann. Inst. Henri Poincaré Probab. Stat. 49(3), 817–838 (2013)
Deprez, P., Hazra, R.S., Wüthrich, M.V.: Inhomogeneous long-range percolation for real-life network modeling. Risks 3(1), 1–23 (2015)
Deprez, P., Wüthrich, M.V.: Poisson heterogeneous random-connection model. arXiv:1312.1948 (2013)
Durrett, R.: Random Graph Dynamics. Cambridge University Press, Cambridge (2007)
Erdős, P., Rényi, A.: On random graphs I. Publ. Math. Debrecen 6, 290–297 (1959)
Franceschetti, M., Meester, R.: Random Networks for Communication. Cambridge University Press, Cambridge (2007)
Gandolfi, A., Grimmett, G.R., Russo, L.: On the uniqueness of the infinite open cluster in the percolation model. Commun. Math. Phys. 114, 549–552 (1988)
Gandolfi, A., Keane, M.S., Newman, C.M.: Uniqueness of the infinite component in a random graph with applications to percolation and spin glasses. Probab. Theory Related Fields 92, 511–527 (1992)
Grimmett, G.R.: Percolation and disordered systems. In: Bernard, P. (ed.) Lectures on Probability and Statistics, Lecture Notes in Mathematics, vol. 1665, pp. 153–300. Springer, New York (1997)
Grimmett, G.R.: Percolation, 2nd edn. Springer, New York (1999)
van der Hofstad, R.: Random graphs and complex networks. http://www.win.tue.nl/~rhofstad/NotesRGCN2013.pdf (2013). Accessed 22 Apr 2015
van der Hofstad, R., Hooghiemstra, G., Znamenksi, D.: Distances in random graphs with finite mean and infinite variance degrees. Electron. J. Probab. 12, 703–766 (2007)
Hurd, T.R., Gleeson, J.P.: A framework for analyzing contagion in banking networks. Preprint (2012)
Kesten, H.: The critical probability of bond percolation on the square lattice equals \(\frac{1}{2}\). Commun. Math. Phys. 74, 41–59 (1980)
Kesten, H.: Percolation Theory for Mathematicians. Birkhäuser, Boston (1982)
Meester, R., Roy, R.: Continuum Percolation. Cambridge University Press, Cambridge (1996)
Molloy, M., Reed, B.: A critical point for random graphs with a given degree sequence. Random Struct. Algorithms 6, 161–180 (1995)
Newman, C.M., Schulman, L.S.: One dimensional \(1/|j-i|^s\) percolation models: the existence of a transition for \(s\le 2\). Commun. Math. Phys. 104, 547–571 (1986)
Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E. 64(2), 026,118 (2001)
Newman, M.E.J., Watts, D.J., Strogatz, S.H.: Random graph models of social networks. Proc. Natl. Acad. Sci. 99, 2566–2572 (2002)
Olhede, S.C., Wolfe, P.J.: Degree-based network models. arXiv:1211.6537v2 (2013)
Schulman, L.S.: Long-range percolation in one dimension. J. Phys. A 16(17), L639–L641 (1983)
Soramäki, K., Bech, M., Arnold, J., Glass, R., Beyeler, W.: The topology of interbank payment flows. Phys. A 379(1), 317–333 (2007)
Trapman, P.: The growth of the infinite long-range percolation cluster. Ann. Probab. 38(4), 1583–1608 (2010)
Watts, D.J.: Six Degrees: The Science of a Connected Age. W. W. Norton, New York (2003)
Wüthrich, M.V.: Non-life insurance: Mathematics and statistics. SSRN Server, Manuscript ID 2319328 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 The Author(s)
About this chapter
Cite this chapter
Deprez, P., Wüthrich, M.V. (2015). Networks, Random Graphs and Percolation. In: Peters, G., Matsui, T. (eds) Theoretical Aspects of Spatial-Temporal Modeling. SpringerBriefs in Statistics(). Springer, Tokyo. https://doi.org/10.1007/978-4-431-55336-6_4
Download citation
DOI: https://doi.org/10.1007/978-4-431-55336-6_4
Published:
Publisher Name: Springer, Tokyo
Print ISBN: 978-4-431-55335-9
Online ISBN: 978-4-431-55336-6
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)