Skip to main content

Differences in Activation Patterns of the Hamstring Muscles During Sprinting

  • Chapter
Sports Injuries and Prevention

Abstract

In this chapter, we evaluate the functional characteristics of the hamstring muscles during sprinting. During near maximal sprinting speed, the respective hamstring muscles exhibited very different characteristics of electromyographic (EMG) activation within the sprinting gait cycle. The activation demand of the BFlh muscles is high before and after foot contact due to their function as hip extensors, while the ST muscle shows high activation primarily during the control of knee extension and hip flexion in the mid-swing phase. The mechanism underlying these activation characteristics may involve architectural differences between the hamstring muscles, which likely reflect each muscle’s function during sprinting. A complex neuromuscular coordination pattern of the hamstring muscles during sprinting is accomplished by the utilisation and activation of each muscle’s specific functional differences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agre JC (1985) Hamstring injuries. Proposed aetiological factors, prevention, and treatment. Sports Med 2(1), 21–33

    Google Scholar 

  • Arnason A, Sigurdsson SB, Gudmundsson A, Holme I, Engebretsen L, Bahr R (2004) Risk factors for injuries in football. Am J Sports Med 32:5S–16S

    Article  PubMed  Google Scholar 

  • Askling CM, Tengvar M, Saartok T, Thorstensson A (2007) Acute first-time hamstring strains during high-speed running: a longitudinal study including clinical and magnetic resonance imaging findings. Am J Sports Med 35:197–206. doi:10.1177/0363546506294679, 0363546506294679 [pii]

    Article  PubMed  Google Scholar 

  • Bennell KL, Crossley K (1996) Musculoskeletal injuries in track and field: incidence, distribution and risk factors. Aust J Sci Med Sport 28:69–75

    CAS  PubMed  Google Scholar 

  • Brooks JH, Fuller CW, Kemp SP, Reddin DB (2005) Epidemiology of injuries in English professional rugby union: part 1 match injuries. Br J Sports Med 39:757–766

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brooks JH, Fuller CW, Kemp SP, Reddin DB (2006) Incidence, risk, and prevention of hamstring muscle injuries in professional rugby union. Am J Sports Med 34:1297–1306

    Article  PubMed  Google Scholar 

  • Chumanov ES, Heiderscheit BC, Thelen DG (2011) Hamstring musculotendon dynamics during stance and swing phases of high-speed running. Med Sci Sports Exerc 43:525–532. doi:10.1249/MSS.0b013e3181f23fe8

    Article  PubMed Central  PubMed  Google Scholar 

  • Croisier JL (2004) Factors associated with recurrent hamstring injuries. Sports Med 34:681–695, 34105 [pii]

    Article  PubMed  Google Scholar 

  • Croisier JL, Ganteaume S, Binet J, Genty M, Ferret JM (2008) Strength imbalances and prevention of hamstring injury in professional soccer players: a prospective study. Am J Sports Med 36:1469–1475

    Article  PubMed  Google Scholar 

  • De Smet AA, Best TM (2000) Mr imaging of the distribution and location of acute hamstring injuries in athletes. Am J Roentgenol 174:393–399

    Article  Google Scholar 

  • Friederich JA, Brand RA (1990) Muscle fiber architecture in the human lower limb. J Biomech 23:91–95, 0021-9290(90)90373-B [pii]

    Article  CAS  PubMed  Google Scholar 

  • Gibbs NJ, Cross TM, Cameron M, Houang MT (2004) The accuracy of mri in predicting recovery and recurrence of acute grade one hamstring muscle strains within the same season in Australian rules football players. J Sci Med Sport 7:248–258

    Article  CAS  PubMed  Google Scholar 

  • Heiderscheit BC, Sherry MA, Silder A, Chumanov ES, Thelen DG (2010) Hamstring strain injuries: recommendations for diagnosis, rehabilitation, and injury prevention. J Orthop Sports Phys Ther 40:67–81. doi:10.2519/jospt.2010.3047, 2394 [pii]

    Article  PubMed Central  PubMed  Google Scholar 

  • Heron MI, Richmond FJ (1993) In-series fiber architecture in long human muscles. J Morphol 216:35–45. doi:10.1002/jmor.1052160106

    Article  CAS  PubMed  Google Scholar 

  • Higashihara A, Ono T, Kubota J, Okuwaki T, Fukubayashi T (2010) Functional differences in the activity of the hamstring muscles with increasing running speed. J Sports Sci 28:1085–1092. doi:10.1080/02640414.2010.494308, 924847988 [pii]

    Article  PubMed  Google Scholar 

  • Higashihara A, Ono T, Nagano Y, and Fukubayashi T (2013) Functional differences in the hamstring muscles during sprinting. In: 31th international conference on biomechanics in Sports 2013, Taipei

    Google Scholar 

  • Hoskins W, Pollard H (2005) The management of hamstring injury–Part 1: Issues in diagnosis. Man Ther 10(2), 96–107

    Google Scholar 

  • Hunter JP, Marshall RN, McNair P (2004) Reliability of biomechanical variables of sprint running. Med Sci Sports Exerc 36:850–861, 00005768-200405000-00018 [pii]

    Article  PubMed  Google Scholar 

  • Jonhagen S, Ericson MO, Nemeth G, Eriksson E (1996) Amplitude and timing of electromyographic activity during sprinting. Scand J Med Sci Sports 6:15–21

    Article  CAS  PubMed  Google Scholar 

  • Koulouris G, Connell D (2005) Hamstring muscle complex: an imaging review. Radiographics 25:571–586. doi:10.1148/rg.253045711, 25/3/571 [pii]

    Article  PubMed  Google Scholar 

  • Kubota J, Ono T, Araki M, Torii S, Okuwaki T, Fukubayashi T (2007) Non-uniform changes in magnetic resonance measurements of the semitendinosus muscle following intensive eccentric exercise. Eur J Appl Physiol 101:713–720

    Article  PubMed  Google Scholar 

  • Kyrolainen H, Komi PV, Belli A (1999) Changes in muscle activity patterns and kinetics with increasing running speed. J Strength Cond Res 13:400–406

    Google Scholar 

  • Kyrolainen H, Avela J, Komi PV (2005) Changes in muscle activity with increasing running speed. J Sports Sci 23:1101–1109

    Article  PubMed  Google Scholar 

  • Lieber RL, Friden J (2000) Functional and clinical significance of skeletal muscle architecture. Muscle Nerve 23:1647–1666. doi:10.1002/1097-4598(200011)23:11<1647::AID-MUS1>3.0.CO;2-M

    Article  CAS  PubMed  Google Scholar 

  • Makihara Y, Nishino A, Fukubayashi T, Kanamori A (2006) Decrease of knee flexion torque in patients with acl reconstruction: combined analysis of the architecture and function of the knee flexor muscles. Knee Surg Sports Traumatol Arthrosc 14:310–317. doi:10.1007/s00167-005-0701-2

    Article  PubMed  Google Scholar 

  • Mann RV (1981) A kinetic analysis of sprinting. Med Sci Sports Exerc 13:325–328

    Article  CAS  PubMed  Google Scholar 

  • Mann R, Sprague P (1980) A kinetic analysis of the ground leg during sprint running. Res Q Exerc Sport 51:334–348

    Article  CAS  PubMed  Google Scholar 

  • Mero A, Komi PV (1987) Electromyographic activity in sprinting at speeds ranging from sub-maximal to supra-maximal. Med Sci Sports Exerc 19:266–274

    Article  CAS  PubMed  Google Scholar 

  • Novacheck TF (1998) The biomechanics of running. Gait Posture 7:77–95

    Article  PubMed  Google Scholar 

  • Ono T, Okuwaki T, Fukubayashi T (2010) Differences in activation patterns of knee flexor muscles during concentric and eccentric exercises. Res Sports Med 18:188–198. doi:10.1080/15438627.2010.490185, 924057280 [pii]

    Article  PubMed  Google Scholar 

  • Ono T, Higashihara A, Fukubayashi T (2011) Hamstring functions during hip-extension exercise assessed with electromyography and magnetic resonance imaging. Res Sports Med 19:42–52. doi:10.1080/15438627.2011.535769, 932527223 [pii]

    Article  PubMed  Google Scholar 

  • Orchard J (2002) Biomechanics of muscle strain injury. N Z J Sports Med 30:92–98

    Google Scholar 

  • Schache AG, Blanch PD, Dorn TW, Brown NA, Rosemond D, Pandy MG (2011) Effect of running speed on lower limb joint kinetics. Med Sci Sports Exerc 43:1260–1271. doi:10.1249/MSS.0b013e3182084929

    Article  PubMed  Google Scholar 

  • Schache AG, Dorn TW, Blanch PD, Brown NA, Pandy MG (2012) Mechanics of the human hamstring muscles during sprinting. Med Sci Sports Exerc 44:647–658. doi:10.1249/MSS.0b013e318236a3d2

    Article  PubMed  Google Scholar 

  • Schache AG, Dorn TW, Wrigley TV, Brown NA, Pandy MG (2013) Stretch and activation of the human biarticular hamstrings across a range of running speeds. Eur J Appl Physiol 113:2813–2828. doi:10.1007/s00421-013-2713-9

    Article  PubMed  Google Scholar 

  • Simonsen EB, Thomsen L, Klausen K (1985) Activity of mono- and biarticular leg muscles during sprint running. Eur J Appl Physiol Occup Physiol 54:524–532

    Article  CAS  PubMed  Google Scholar 

  • Slavotinek JP, Verrall GM, Fon GT (2002) Hamstring injury in athletes: using mr imaging measurements to compare extent of muscle injury with amount of time lost from competition. AJR Am J Roentgenol 179:1621–1628

    Article  PubMed  Google Scholar 

  • Sugiura Y, Saito T, Sakuraba K, Sakuma K, Suzuki E (2008) Strength deficits identified with concentric action of the hip extensors and eccentric action of the hamstrings predispose to hamstring injury in elite sprinters. J Orthop Sports Phys Ther 38:457–464. doi:10.2519/jospt.2008.2575, 1409 [pii]

    Article  PubMed  Google Scholar 

  • Thelen DG, Chumanov ES, Hoerth DM, Best TM, Swanson SC, Li L, Young M, Heiderscheit BC (2005) Hamstring muscle kinematics during treadmill sprinting. Med Sci Sports Exerc 37:108–114

    Article  PubMed  Google Scholar 

  • Wickiewicz TL, Roy RR, Powell PL, Edgerton VR (1983) Muscle architecture of the human lower limb. Clin Orthop Relat Res 179:275–283

    PubMed  Google Scholar 

  • Woodley SJ, Mercer SR (2005) Hamstring muscles: architecture and innervation. Cells Tissues Organs 179:125–141. doi:10.1159/000085004, CTO2005179003125 [pii]

    Article  PubMed  Google Scholar 

  • Woods C, Hawkins RD, Maltby S, Hulse M, Thomas A, Hodson A (2004) The football association medical research programme: an audit of injuries in professional football–analysis of hamstring injuries. Br J Sports Med 38:36–41

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu B, Queen RM, Abbey AN, Liu Y, Moorman CT, Garrett WE (2008) Hamstring muscle kinematics and activation during overground sprinting. J Biomech 41:3121–3126. doi:10.1016/j.jbiomech.2008.09.005, S0021-9290(08)00455-7 [pii]

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayako Higashihara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Higashihara, A., Ono, T., Fukubayashi, T. (2015). Differences in Activation Patterns of the Hamstring Muscles During Sprinting. In: Kanosue, K., Ogawa, T., Fukano, M., Fukubayashi, T. (eds) Sports Injuries and Prevention. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55318-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55318-2_25

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55317-5

  • Online ISBN: 978-4-431-55318-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics