Skip to main content

Iron-Based Superconductors

  • Chapter
  • First Online:
  • 2081 Accesses

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 213))

Abstract

The iron-based superconductors (Fe-SCs) comprise a big family having the highest T c = 55 K. In this family, an indispensable element is the typical magnetic element Fe, and except for the layer structure the characteristic electronic parameters are largely different from those in the cuprates. The discovery of this family, therefore, evidences that there are more than one route to finding high-T c materials with T c higher than 50 K. The parent compounds are antiferromagnetic metals, and both chemical substitution (doping) and application of pressure induce superconductivity. Like the cuprates, Fe-SCs show unconventional pairing, suggesting that strong electronic correlations play a major role in the pair formation. The strong correlations and high T c have a root in the unique characteristics of the common building block composed of Fe and As (Se) layers in which an unusual antiferromagnetic state is also formed. T c is material dependent, but the maximum T c reaches around 50 K in most of sub-families after optimization, and never exceeds 55 K. For further enhancement of T c, it may be needed to prepare an additional pairing channel by fabricating a novel structure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kamihara Y, Watanebe T, Hirano M, Hosono H (2008) Iron-based layered superconductor La[O1–x F x ]FeAs with T c = 26 K. J Am Chem Soc 130:3296–3297. doi:10.1021/ja800073m

    Article  Google Scholar 

  2. Ren ZA et al (2008) Superconductivity at 55 K in iron-based F-doped layered quaternary compound Sm[O1–x F x ]FeAs. Chin Phys Lett 25:2215–2216. doi:10.1088/0256-307X/25/6/080

    Article  ADS  Google Scholar 

  3. Rotter M, Panger IM, Tegel M, Johrendt D (2008) Superconductivity and crystal structure of (Ba1−x K x )Fe2As2 (x = 0 – 1). Angew Chem Int Ed 47:7949–7952. doi:10.1002/anie.200803641

    Article  Google Scholar 

  4. Wang XC et al (2008) The superconductivity at 18 K in LiFeAs system. Solid State Commun 148:538–540. doi:10.1016/j.ssc.2008.09.057

    Article  ADS  Google Scholar 

  5. Hsu FC et al (2008) Superconductivity in the PbO type structure α-FeSe. Proc Natl Acad Sci U S A 105:14262–14264. doi:10.1073/pnas.0807325105

    Article  ADS  Google Scholar 

  6. Guo JG et al (2010) Superconductivity in the iron selenide KxFe2Se2 (0 ≦ x ≦ 1.0). Phys Rev B 82:180520. doi:10.1103/PhysRevB.82.180520

    Article  ADS  Google Scholar 

  7. Zhu XY, Han F, Mu G, Cheng P, Shen B, Zeng B, Wen HH (2009) Transition of stoichiometric Sr2VO3FeAs to a superconducting state at 37.2 K. Phys Rev B 79:220512(R). doi:10.1103/PhysRevB.79.220512

    Article  ADS  Google Scholar 

  8. Lee CH et al (2008) Effect of structural parameters on superconductivity in fluorine-free LnFeAsO1–y (Ln = La, Nd). J Phys Soc Jpn 77:083704. doi:10.1143/JPSJ.77.083704

    Article  ADS  Google Scholar 

  9. Kuroki K, Usui H, Onari S, Arita R, Aoki H (2009) Pnictogen height as a possible switch between high-T c nodeless and low-T c nodal pairings in the iron-based superconductors. Phys Rev B 79:224511. doi:10.1103/PhysRevB.79.224511

    Article  ADS  Google Scholar 

  10. Johnston DC (2010) The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides. Adv Phys 59:803–1061. doi:10.1080/00018732.2010.513480.l

    Article  ADS  Google Scholar 

  11. Kasahara S et al (2010) Evolution from non-Fermi-to-Fermi-liquid transport via isovalent doping in BaFe2(As1–x P x )2 superconductors. Phys Rev B 81:184519. doi:10.1103/PhysRevB.81.184519

    Article  ADS  Google Scholar 

  12. Ishida S et al (2010) Strong carrier scattering in iron pnictide superconductors LnFeAsO1–y (Ln = La and Nd) obtained from charge transport experiments. Phys Rev B 81:094515. doi:10.1103/PhysRevB.81.094515

    Article  ADS  Google Scholar 

  13. Berciu M, Elfimov I, Sawatzky GA (2009) Electronic polarons and bipolarons in iron-based superconductors: the role of anions. Phys Rev B 79:214507. doi:10.1103/PhysRevB.79.214507

    Article  ADS  Google Scholar 

  14. Singh DJ (2009) Electronic structure of Fe-based superconductors. Physica C 469:418–424

    Article  ADS  Google Scholar 

  15. Luetkens H et al (2009) The electronic phase diagram of the LaO1–x F x FeAs superconductor. Nature Mater 8:305–309. doi:10.1038/nmat2397

    Article  ADS  Google Scholar 

  16. Drew AJ et al (2009) Coexistence of static magnetism and superconductivity in SmFeAsO1–x F x a revealed by moon spin rotation. Nature Mater 8:310–314. doi:10.1038/nmat2396

    Article  ADS  Google Scholar 

  17. Chu J-H et al (2010) In-plane resistivity anisotropy in an underdoped iron pnictide superconductor. Science 329:824–826. doi:10.1126/science.1190482

    Article  ADS  Google Scholar 

  18. Kasahara S et al (2012) Electronic nematicity above the structural and superconducting transition in BaFe2(As1–x P x )2. Nature 486:382–385. doi:10.1038/nature11178

    Article  ADS  Google Scholar 

  19. Iimura S et al (2014) Two-dome structure in electron-doped iron arsenide superconductors. Nature Commun 3:943. doi:10.1038/ncomms1913

    Article  Google Scholar 

  20. Sun LL et al (2012) Re-emerging superconductivity at 48 kelvin in iron chalcogenides. Nature 483:67–69. doi:10.1038/nature10813

    Article  ADS  Google Scholar 

  21. Hiraishi M et al (2014) Bipartite magnetic parent phases in the iron oxypnictide superconductor. Nature Phys 10:300–303. doi:10.1038/nphys52906

    Article  ADS  Google Scholar 

  22. Yildirim T (2009) Strong coupling of the Fe-spin state and the As-As hybridization in iron-pnictide superconductors from first-principle calculations. Phys Rev Lett 102:037003. doi:10.1103/PhysRevLett.102.037003

    Article  ADS  Google Scholar 

  23. Nandi S et al (2010) Anomalous suppression of the orthorhombic distortions in superconducting Ba(Fe1–x Co x )2As2 single crystals. Phys Rev Lett 104:057006. doi:10.1103/PhysRevLett.104.057006

    Article  ADS  Google Scholar 

  24. Zhao J et al (2009) Spin waves and magnetic exchange interactions in CaFe2As2, Nature Phys 5:555–560. doi:10.1038/nphys1336.

    Article  ADS  Google Scholar 

  25. Nakajima M et al (2011) Unprecedented anisotropic metallic state in undoped iron arsenide BaFe2As2 revealed by optical spectroscopy. Proc Nat Acad Sci U S A 108:12238–12242. doi:10.1073/pnas.1100102108

    Article  Google Scholar 

  26. Yin ZP, Haule K, Kotliar G (2011) Magnetism and charge dynamics in iron pnictides. Nature Phys 7:294–297. doi:10.1038/nphys1923

    Article  ADS  Google Scholar 

  27. Ran Y, Wang F, Vishwanath A, Lee D-H (2009) Nodal spin density wave and band topology of the FeAs-based materials. Phys Rev B 79:014505. doi:10.1103/PhysRevB.79.014505

    Article  ADS  Google Scholar 

  28. Nakajima M et al (2012) Effect of co doping on the in-plane anisotropy in the optical spectrum of underdoped Ba(Fe1–x Co x )2As2. Phys Rev Lett 109:217003. doi:10.1103/PhysRevLett.109.217003

    Article  ADS  Google Scholar 

  29. Allan MP et al (2013) Anisotropic impurity state, quasiparticle scattering, and nematic transport in underdoped Ca(Fe1–x Co x )2As2. Nature Phys 9:220–224. doi:10.1038/nphys2544

    Article  ADS  Google Scholar 

  30. Ying JJ et al (2011) Measurement of the in-plane anisotropic resistivity of underdoped FeAs-based pnictide superconductors. Phys Rev Lett 107:067001. doi:10.1103/PhysRevLett.107.067001

    Article  ADS  Google Scholar 

  31. Hanaguri T, Niitaka S, Kuroki K, Takagi H (2010) Unconventional s-wave superconductivity in Fe(Se, Te). Science 328:474–476. doi:10.1126/science.1187399

    Article  ADS  Google Scholar 

  32. Watanabe D et al (2014) Superconducting gap with sign reversal between hole pockets in heavily overdoped Ba1–x K x Fe2As2. Phys Rev B 89:115112. doi:10.1103/PhysRevB.89.115112

    Article  ADS  Google Scholar 

  33. Uemura YJ (2009) Commonalities in phase and mode. Nature Mater 8:253–255. doi:10.1038/nmat2415

    Article  ADS  Google Scholar 

  34. Rullier-Albenque F, Colson D, Forget A, Alloul H (2009) Hall effect and resistivity study of the magnetic transition, carrier content, and fermi-liquid behavior in Ba(Fe1–x Co x )2As2. Phys Rev Lett 103:057001. doi:10.1103/PhysRevLett.103.057001

    Article  ADS  Google Scholar 

  35. Sekiba Y et al (2009) Electronic structure of heavily electron-doped BaFe1.7Co0.3As2 studied by angle-resolved-photoemission. New J Phys 11:025020. doi:10.1088/1367-2630/11/2/025020

    Article  Google Scholar 

  36. Shishido et al (2010). Evolution of the fermi surface of BaFe2(As1–x P x )2 on entering the superconducting dome. Phys Rev Lett 104:057008. doi:10.1103/PhysRevLett.104.057008

    Google Scholar 

  37. Nakajima M et al (2013) Crossover from bad to good metal in BaFe2(As1–x P x )2 induced by isovalent P substitution. Phys Rev B 88:094501. doi:10.1103/PhysRevB.88.094501

    Article  ADS  Google Scholar 

  38. Liu C et al (2008) K-doping dependence of the fermi surface of the iron-arsenic Ba1–x K x Fe2As2 superconductor using angle-resolved photoemission spectroscopy. Phys Rev 101:179005. doi:10.1103/PhysRevLett.101.179005

    Google Scholar 

  39. Malaeb W et al (2012) Abrupt change in the energy gap of superconducting Ba1–x K x Fe2As2 single crystals with hole doping. Phys Rev B 86:165117. doi:10.1103/PhysRevB.86.165117

    Article  ADS  Google Scholar 

  40. Nakajima M et al (2014) Normal state charge dynamics in doped BaFe2As2: role doping and necessary ingredients for superconductivity. Sci Rep 4:5873. doi:10.1038/srep05873

    Article  ADS  Google Scholar 

  41. Terashima T et al (2010) Fermi surface and mass enhancement in KFe2As2 from de Haas-van Alphen effect measurements. J Phys Soc Jpn 79:053702. doi:10.1143/JPSJ.79.053702

    Article  ADS  Google Scholar 

  42. Norman MR (2011) The challenge of unconventional superconductivity. Science 332:196–200. doi:10.1126/science.1200181

    Article  ADS  Google Scholar 

  43. Georges A, de’Medici L, Mravlje J (2013) Strong correlations from Hund’s coupling. Annu Rev Condens Matter Phys 4:137–178. doi:10.1146/annurev-conmatphys-020911-125045

    Article  ADS  Google Scholar 

  44. Uchida S, Ido T, Takagi H, Arima T, Tokura Y, Tajima S (1991) Optical spectra of La,2–x Sr x CuO4: effect of carrier doping on the electronic structure of the CuO2 plane. Phys Rev B 43:7942–7954

    Article  ADS  Google Scholar 

  45. Misawa T, Nakamura K, Imada M (2012) Ab initio evidence for strong correlation associated with mott proximity in iron-based superconductors. Phys Rev Lett 108:177007. doi:10.1103/PhysRevLett.108.177007

    Article  ADS  Google Scholar 

  46. Singh Y, Green MA, Huang Q, Kreyssig A, McQueeney RJ, Johnston DC, Goldman AI (2009) Magnetic order in BaMn2As2 from neutron diffraction measurements. Phys Rev B 80:100403 (R). doi:10.1103/PhysRevB.80.100403

    Article  ADS  Google Scholar 

  47. de’Medici L, Giovannetti G, Capone M (2014) Selective mottness as a key to iron superconductors. Phys Rev Lett 112:177001. doi:10.1103/PhysRevLett.112.177001

    Article  ADS  Google Scholar 

  48. Yi M et al (2013) Observation of temperature-induced crossover to an orbital-selective mott phase in A x Fe2–y Se2 (A = K, Rb) superconductors. Phys Rev Lett 110:067003. doi:10.1103/PhysRevLett.110.067003

    Article  ADS  Google Scholar 

  49. Nakajima M et al (2014) Strong electronic correlations in iron pnictides: comparison of the optical spectra for BaFe2As2-related compounds. J. Phys. Soc. Jpn. 83: 104703. doi: 10.7566/JPSJ.83.104703

    Google Scholar 

  50. Wei FY, Lv B, Deng LZ, Meen JK, Xue YY, Chu CW (2013) Why is the superconducting T c so high in rare-earth-doped CaFe2As2? http://arXiv.org/abs/1309.0034. Accessed 6 Sept 2013

  51. Kudo K et al (2014) Enhanced superconductivity to 43 K by P/Sb doping of Ca1–x La x FeAs2. J Phys Soc Jpn 83:025001. doi:10.1143/JPSJ.83.025001

    Article  Google Scholar 

  52. Ogino H, Shimizu Y, Ushiyama K, Kawaguchi N, Kishio K, Shimoyama J (2010) Appl Phys Express 3:063103. doi:10.1143/apex.3.063103

    Google Scholar 

  53. Miyoshi K et al (2014) Enhanced superconductivity on the tetragonal lattice in FeSe under hydrostatic pressure. J Phys Soc Jpn 83:013702. doi:10.7566/JPSJ.83.013702

    Article  Google Scholar 

  54. Wang QY et al (2012) Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3. Chin Phys Lett 29:037402. doi:10.1088/0256-307X/29/3/037402

    Article  ADS  Google Scholar 

  55. He S et al (2013) Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films. Nature Mater 12:605–610. doi:10.1038/nmat3648

    Article  ADS  Google Scholar 

  56. Ge JF, Xue QK, Jin JF (2014) Superconductivity in single-layer film of FeSe with a transition temperature above 100 K. http://arXiv.org/abs/1406.3435. Accessed 13 June 2014

  57. Lee JJ et al (2013) Evidence for pairing enhancement in single unit cell FeSe an SrTiO3 due to cross-interfacial electron-phonon coupling. http://arXiv.org/abs/1312.2633. Accessed 10 Dec 2013

  58. Johnston S, Vernay F, Moritz B, Shen Z-X, Nagaosa N, Zaanen J, Devereaux TP (2010) Systematic study of electron-phonon coupling to oxygen modes across the cuprates. Phys Rev B 82:064513. doi:10.1103/PhysRevB.82.064513

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-ichi Uchida .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Uchida, Si. (2015). Iron-Based Superconductors. In: High Temperature Superconductivity. Springer Series in Materials Science, vol 213. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55300-7_4

Download citation

Publish with us

Policies and ethics