Skip to main content

Four-Dimensional Analysis for a Tumor Invasion

  • Chapter
  • First Online:
Hyper Bio Assembler for 3D Cellular Systems
  • 642 Accesses

Abstract

Four-dimensional analysis provides the understandings for a tumor invasion. The analysis is of three-dimensional with times. In this part, we describe the cellular mobility focused on reactive oxygen species from mitochondria. Mitochondrial ROS is involved in cancer properties such as growth, metastasis and invasion. On the other hand, carcinogenesis and malignancy are involved in environmental factors such as foods. Thus, we evaluated whether sodium chloride and ethanol induce mitochondrial ROS or not. These results indicated that mitochondrial ROS enhances cancer cellular invasion, meanwhile, sodium chloride and ethanol induced a production of mitochondrial ROS in cells. Taking these results into accounts, sodium chloride and ethanol probably enhances tumor invasion. In addition, cellular morphology is alternated when cells invades into pericellular matrix. If cellular characters such as an ability of invasion can be suggested by cellular observation, classification of cancer cellular malignancy is easy. Therefore, we have developing a novel method of cell picking from three-dimensional culture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nishikawa M (2008) Reactive oxygen species in tumor metastasis. Cancer Lett 266(1):53–59

    Article  MathSciNet  Google Scholar 

  2. Kamata H, Honda S-I, Maeda S, Chang L, Hirata H, Karin M (2005) Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120(5):649–661

    Article  Google Scholar 

  3. Lokeshwar BL, Selzer MG, Zhu B-Q, Block NL, Golub LM (2002) Inhibition of cell proliferation, invasion, tumor growth and metastasis by an oral non-antimicrobial tetracycline analog (COL-3) in a metastatic prostate cancer model. Int J Cancer 98(2):297–309

    Article  Google Scholar 

  4. Kim E-Y, Seo J-M, Cho K-J, Kim J-H (2010) Ras-induced invasion and metastasis are regulated by a leukotriene B4 receptor BLT2-linked pathway. Oncogene 29(8):1167–1178

    Article  Google Scholar 

  5. Kumar B, Koul S, Khandrika L, Meacham RB, Koul HK (2008) Oxidative stress is inherent in prostate cancer cells and is required for aggressive phenotype. Cancer Res 68(6):1777–1785

    Article  Google Scholar 

  6. Bernstein H, Bernstein C, Payne CM, Dvorakova K, Garewal H (2005) Bile acids as carcinogens in human gastrointestinal cancers. Mutat Res 589(1):47–65

    Article  Google Scholar 

  7. Wu W-S, Wu J, Hu C (2008) Signal cross talks for sustained MAPK activation and cell migration: the potential role of reactive oxygen species. Cancer Metastasis Rev 27(2):303–314

    Article  Google Scholar 

  8. Wu W-S (2006) The signaling mechanism of ROS in tumor progression. Cancer Metastasis Rev 25(4):695–705

    Article  Google Scholar 

  9. Westermarck J, Kähäri VM (1999) Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J 13(8):781–792

    Google Scholar 

  10. Curran S, Murray GI (1999) Matrix metalloproteinases in tumour invasion and metastasis. J Pathol 189(3):300–308

    Article  Google Scholar 

  11. Shinohara M, Adachi Y, Mitsushita J, Kuwabara M, Nagasawa A, Harada S, Furuta S, Zhang Y, Seheli K, Miyazaki H, Kamata T (2010) Reactive oxygen generated by NADPH oxidase 1 (Nox1) contributes to cell invasion by regulating matrix metalloprotease-9 production and cell migration. J Biol Chem 285(7):4481–4488

    Article  Google Scholar 

  12. Majima HJ, Toyokuni S (2012) Mitochondria and free radical studies on health, disease and pollution. Free Radic Res 46(8):925–926

    Article  Google Scholar 

  13. Indo HP, Davidson M, Yen H-C, Suenaga S, Tomita K, Nishii T, Higuchi M, Koga Y, Ozawa T, Majima HJ (2007) Evidence of ROS generation by mitochondria in cells with impaired electron transport chain and mitochondrial DNA damage. Mitochondrion 7(1–2):106–118

    Article  Google Scholar 

  14. Tamura M, Matsui H, Tomita T, Sadakata H, Indo HP, Majima HJ, Kaneko T, Hyodo I (2013) Mitochondrial reactive oxygen species accelerate gastric cancer cell invasion. J Clin Biochem Nutr 54(1):12–17

    Google Scholar 

  15. Dikken JL, Velde CJH, Gönen M, Verheij M, Brennan M, Coit DG (2012) The New American Joint Committee on Cancer/International Union Against Cancer Staging System for Adenocarcinoma of the Stomach: Increased Complexity without Clear Improvement in Predictive Accuracy Ann Surg Oncol 19:2443–2451

    Google Scholar 

  16. Zhong W, Oberley LW, Oberley TD, Clair DKSt (1997) Suppression of the malignant phenotype of human glioma cells by overexpression of manganese superoxide dismutase. Oncogene 14(4):481–490

    Article  Google Scholar 

  17. Sotgia F, Martinez-Outschoorn UE, Lisanti MP (Jan 2011) Mitochondrial oxidative stress drives tumor progression and metastasis: should we use antioxidants as a key component of cancer treatment and prevention? BMC Med 9(1):62

    Article  Google Scholar 

  18. Indo HP, Davidson M, Yen H-C, Suenaga S, Tomita K, Nishii T, Higuchi M, Koga Y, Ozawa T, Majima HJ (2007) Evidence of ROS generation by mitochondria in cells with impaired electron transport chain and mitochondrial DNA damage. Mitochondrion 7(1–2):106–118

    Article  Google Scholar 

  19. a Okado-Matsumoto and I. Fridovich (2001) Subcellular distribution of superoxide dismutases (SOD) in rat liver: Cu, Zn-SOD in mitochondria. J Biol Chem 276(42):38388–38393

    Article  Google Scholar 

  20. Zhang HJ, Yan T, Oberley TD, Oberley LW (1999) Comparison of effects of two polymorphic variants of manganese superoxide dismutase on human breast MCF-7 cancer cell phenotype. Cancer Res 59(24):6276–6283

    Google Scholar 

  21. Indo HP, Inanami O, Koumura T, Suenaga S, Yen H-C, Kakinuma S, Matsumoto K-I, Nakanishi I, St Clair W, St Clair DK, Matsui H, Cornette R, Gusev O, Okuda T, Nakagawa Y, Ozawa T, Majima HJ (2012) Roles of mitochondria-generated reactive oxygen species on X-ray-induced apoptosis in a human hepatocellular carcinoma cell line, HLE. Free Radic Res 46(8):1029–1043

    Article  Google Scholar 

  22. Kobayashi I, Kawano S, Tsuji S, Matsui H, Nakama A, Sawaoka H, Masuda E, Takei Y, Nagano K, Fusamoto H, Ohno T, Fukutomi H, Kamada T (1996) RGM1, a cell line derived from normal gastric mucosa of rat. In Vitro Cell Dev Biol Anim 32(5):259–261

    Article  Google Scholar 

  23. Shimokawa O, Matsui H, Nagano Y, Kaneko T, Shibahara T, Nakahara A, Hyodo I, Yanaka A, Majima HJ, Nakamura Y, Matsuzaki Y (2008) Neoplastic transformation and induction of H+,K+-adenosine triphosphatase by N-methyl-N’-nitro-N-nitrosoguanidine in the gastric epithelial RGM-1 cell line. In Vitro Cell Dev Biol Anim 44(1–2):26–30

    Article  Google Scholar 

  24. Motoori S, Majima HJ, Ebara M, Kato H, Hirai F, Kakinuma S, Yamaguchi C, Ozawa T, Nagano T, Tsujii H, Saisho H (2001) Overexpression of mitochondrial manganese superoxide dismutase protects against radiation-induced cell death in the human hepatocellular carcinoma cell line HLE. Cancer Res 61(14):5382–5388

    Google Scholar 

  25. Majima HJ, Indo HP, Suenaga S, Kaneko T, Matsui H, Yen HC, Ozawa T (2011) Mitochondria as source of free radicals. Free Radic Biol 29:12–22

    Google Scholar 

  26. Majima HJ, Oberley TD, Furukawa K, Mattson MP, Yen HC, Szweda LI, Clair DKSt (1998) Prevention of mitochondrial injury by manganese superoxide dismutase reveals a primary mechanism for alkaline-induced cell death. J Biol Chem 273(14):8217–8224

    Article  Google Scholar 

  27. Majima HJ, Indo HP, Suenaga S, Matsui H, Yen H-C, Ozawa T (2011) Mitochondria as possible pharmaceutical targets for the effects of vitamin E and its homologues in oxidative stress-related diseases. Curr Pharm Des 17(21):2190–2195

    Article  Google Scholar 

  28. Rai K, Matsui H, Kaneko T, Nagano Y, Shimokawa O, Udo J, Hirayama A, Hyodo I, Indo HP, Majima HJ (2011) Lansoprazole inhibits mitochondrial superoxide production and cellular lipid peroxidation induced by indomethacin in RGM1 cells. J Clin Biochem Nutr 49(1):25–30

    Article  Google Scholar 

  29. Nagano Y, Matsui H, Tamura M, Shimokawa O, Nakamura Y, Kaneko T, Hyodo I (Jan 2012) NSAIDs and acidic environment induce gastric mucosal cellular mitochondrial dysfunction. Digestion 85(2):131–135

    Article  Google Scholar 

  30. Nagano Y, Matsui H, Shimokawa O, Hirayama A, Nakamura Y, Tamura M, Rai K, Kaneko T, Hyodo I (2012) Bisphosphonate-induced gastrointestinal mucosal injury is mediated by mitochondrial superoxide production and lipid peroxidation. J Clin Biochem Nutr 51(3):196–203

    Google Scholar 

  31. Tamura M, Mutoh M, Fujii G, Matsui H (2013) Involvement of mitochondrial reactive oxygen species in gastric carcinogenesis. J Gastrointest Dig Syst 3(4):150

    Article  Google Scholar 

  32. Sonnenberg A (1986) Dietary salt and gastric ulcer. Gut 27(10):1138–1142

    Article  Google Scholar 

  33. Katsuhara M, Otsuka T, Ezaki B (2005) Salt stress-induced lipid peroxidation is reduced by glutathione -transferase, but this reduction of lipid peroxides is not enough for a recovery of root growth in. Plant Sci 169(2):369–373

    Article  Google Scholar 

  34. Liu R, Garvin JL, Ren Y, Pagano PJ, O. a Carretero (2007) Depolarization of the macula densa induces superoxide production via NAD(P)H oxidase. Am J Physiol Renal Physiol 292(6):F1867–72

    Article  Google Scholar 

  35. Griffiths ME, Orians CM (2003) Salt spray differentially affects water status, necrosis, and growth in coastal sandplain heathland species. Am J Bot 90(8):1188–1196

    Article  Google Scholar 

  36. Tamura M, Matsui H, Nagano YN, Kaneko T, Indo HP, Majima HJ, Hyodo I (2013) Salt is an oxidative stressor for gastric epithelial cells. J Physiol Pharmacol 64(1):89–94

    Google Scholar 

  37. Tamura M, Matsui H, Kaneko T, Hyodo I (2013) Alcohol is an oxidative stressor for gastric epithelial cells: detection of superoxide in living cells. J Clin Biochem Nutr 53(2):75–80

    Article  Google Scholar 

  38. Julkunen RJ, Di Padova C, Lieber CS (1985) First pass metabolism of ethanol-a gastrointestinal barrier against the systemic toxicity of ethanol. Life Sci 37(6):567–573

    Article  Google Scholar 

  39. Pronko P, Bardina L, Satanovskaya V, Kuzmich A, Zimatkin S (2002) Effect of chronic alcohol consumption on the ethanol- and acetaldehyde-metabolizing systems in the rat gastrointestinal tract. Alcohol Alcohol 37(3):229–235

    Google Scholar 

  40. Uzma N, Kumar BS, Priyadarsini KI (2011) Hepatoprotective, immunomodulatory, and anti-inflammatory activities of selenocystine in experimental liver injury of rats. Biol Trace Elem Res 142(3):723–734

    Article  Google Scholar 

  41. Tamura M, Ito H, Matsui H, Hyodo I (2014) Acetaldehyde is an oxidative stressor for gastric epithelial cells. J Clin Biochem Nutr 55(1):26–31

    Article  Google Scholar 

  42. Tamura M, Yanagawa F, Sugiura S, Toshiyuki T, Kimio S, Hirofumi M, Toshiyuki K (2014) Optical cell separation from three-dimensional environment in photodegradable hydrogels for pure culture techniques. Sci Rep 4:4793

    Google Scholar 

  43. Ohmuro-Matsuyama Y, Tatsu Y (2008) Photocontrolled cell adhesion on a surface functionalized with a caged arginine-glycine-aspartate peptide. Angew Chem Int Ed Engl 47(39):7527–7529

    Article  Google Scholar 

  44. Petersen S, Alonso JM, Specht A, Duodu P, Goeldner M, del Campo A (Jan 2008) Phototriggering of cell adhesion by caged cyclic RGD peptides. Angew Chem Int Ed Engl 47(17):3192–3195

    Article  Google Scholar 

  45. Liu D, Xie Y, Shao H, Jiang X (Jan 2009) Using azobenzene-embedded self-assembled monolayers to photochemically control cell adhesion reversibly. Angew Chem Int Ed Engl 48(24):4406–4408

    Article  Google Scholar 

  46. Jang K, Sato K, Mawatari K, Konno T, Ishihara K, Kitamori T (2009) Surface modification by 2-methacryloyloxyethyl phosphorylcholine coupled to a photolabile linker for cell micropatterning. Biomaterials 30(7):1413–1420

    Article  Google Scholar 

  47. Nakanishi J, Kikuchi Y, Inoue S, Yamaguchi K, Takarada T, Maeda M (2007) Spatiotemporal control of migration of single cells on a photoactivatable cell microarray. J Am Chem Soc 129(21):6694–6695

    Article  Google Scholar 

  48. Kaneko S, Nakayama H, Yoshino Y, Fushimi D, Yamaguchi K, Horiike Y, Nakanishi J (2011) Photocontrol of cell adhesion on amino-bearing surfaces by reversible conjugation of poly(ethylene glycol) via a photocleavable linker. Phys Chem Chem Phys 13(9):4051–4059

    Article  Google Scholar 

  49. Guo Q, Wang X, Tibbitt MW, Anseth KS, Montell DJ, Elisseeff JH (2012) Light activated cell migration in synthetic extracellular matrices. Biomaterials 33(32):8040–8046

    Article  Google Scholar 

  50. Edahiro J-I, Sumaru K, Tada Y, Ohi K, Takagi T, Kameda M, Shinbo T, Kanamori T, Yoshimi Y (2005) In situ control of cell adhesion using photoresponsive culture surface. Biomacromolecules 6(2):970–974

    Article  Google Scholar 

  51. Sugiura S, Takagi T, Yamaguchi M, Sumaru K, Kanamori T (2012) A photodegradable hydrogel sheet for microscale optical control of cell adhesion and detachment. Proc mTAS 671–673

    Google Scholar 

  52. Wong DY, Griffin DR, Reed J, Kasko AM (2010) Photodegradable hydrogels to generate positive and negative features over multiple length scales. Macromolecules 43(6):2824–2831

    Article  Google Scholar 

  53. Kloxin AM, Tibbitt MW, Kasko AM, Fairbairn JA, Anseth KS (2010) Tunable hydrogels for external manipulation of cellular microenvironments through controlled photodegradation. Adv Mater 22(1):61–66

    Article  Google Scholar 

  54. Kloxin AM, Kasko AM, Salinas CN, Anseth KS (April 2009) Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324(5923):59–63

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirofumi Matsui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Tamura, M., Matsui, H. (2015). Four-Dimensional Analysis for a Tumor Invasion. In: Arai, T., Arai, F., Yamato, M. (eds) Hyper Bio Assembler for 3D Cellular Systems. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55297-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55297-0_20

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55296-3

  • Online ISBN: 978-4-431-55297-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics