Skip to main content

Cell Scooper: A Device for the Rapid Transfer of Living Cell Sheet

  • 649 Accesses

Abstract

In this study, we developed a device that could easily, rapidly, and completely transfer cell sheets from one material to another or transplant cell sheets onto the dorsal subcutaneous tissues of rats without leaving residual cells. Because the manipulation is as simple as pipetting, technical expertise is not required to transfer cell sheets very rapidly (the transfer time was 3.7 ± 1.6 s) using the device compared with that of a conventional method using a pipette (430 ± 180 s). After transfer by the device, C2C12 skeletal myoblast sheets showed active cell metabolism, cell viability, and very high production of vascular endothelial growth factor and stromal-derived factor-1α, indicating transfer without cell damage. Cardiac cell sheets after transfer showed spontaneous and synchronous beating, indicating intact cell-cell junctions and ion channel proteins on the cell opsurface. In addition, the device allowed us to transfer C2C12 cell sheets onto soft, rugged and curved surfaces such as human hands. Furthermore, cardiac cell sheets adhered rapidly and tightly onto the dorsal subcutaneous tissues of rats. This transfer/transplantation device may be a powerful tool in cell sheet-based tissue engineering and regenerative medicine.

Keywords

  • Mechanism
  • Device
  • Scooping
  • Transfer

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-4-431-55297-0_14
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-4-431-55297-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 14.1
Fig. 14.2
Fig. 14.3
Fig. 14.4
Fig. 14.5
Fig. 14.6
Fig. 14.7

References

  1. Menasché P (2008) Skeletal myoblasts and cardiac repair. J Mol Cell Cardiol 45:545–553

    CrossRef  Google Scholar 

  2. Atala A, Lanza R, Thomson JA, Nerem R (2011) Principles of regenerative medicine, 2nd edn. Academic Press, San Diego

    Google Scholar 

  3. Bolli R, Chugh AR, D’Amario D, Loughran JH, Stoddard MF, Ikram S, Beache GM, Wagner SG, Leri A, Hosoda T, Sanada F, Elmore JB, Goichberg P, Cappetta D, Solankhi NK, Fahsah I, Rokosh DG, Slaughter MS, Kajstura J, Anversa P (2011) Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 378:1847–1857

    CrossRef  Google Scholar 

  4. Zimmermann WH, Melnychenko I, Wasmeier G, Didié M, Naito H, Nixdorff U, Hess A, Budinsky L, Brune K, Michaelis B, Dhein S, Schwoerer A, Ehmke H, Eschenhagen T (2006) Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat Med 12:452–458

    CrossRef  Google Scholar 

  5. Chachques JC, Trainini JC, Lago N, Masoli OH, Barisani JL, Cortes-Morichetti M, Schussler O, Carpentier A (2007) Myocardial assistance by grafting a new bioartificial upgraded myocardium (MAGNUM clinical trial): one year follow-up. Cell Transplant 16:927–934

    CrossRef  Google Scholar 

  6. Shinoka T, Breuer C (2008) Tissue-engineered blood vessels in pediatric cardiac surgery. Yale J Biol Med 81:161–166

    Google Scholar 

  7. Lee K, Chan CK, Patil N, Goodman SB (2009) Cell therapy for bone regeneration-bench to bedside. J Biomed Mater Res Part B Appl Biomater 89:252–263

    CrossRef  Google Scholar 

  8. Iwasa J, Engebretsen L, Shima Y, Ochi M (2009) Clinical application of scaffolds for cartilage tissue engineering. Knee Surg Sports Traumatol Arthrosc 17:561–577

    CrossRef  Google Scholar 

  9. Yamada N, Okano T, Sakai H, Karikusa F, Sawasaki Y, Sakurai Y (1990) Thermo-responsive polymeric surface: control of attachment and detachment of cultured cells. Makromol Chem Rapid Commun 11:571–576

    CrossRef  Google Scholar 

  10. Okano T, Yamada H, Sakai H, Sakurai Y (1993) A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly (N-isopropylacrylamide). J Biomed Mater Res 27:1243–1251

    CrossRef  Google Scholar 

  11. Shimizu T, Yamato M, Isoi Y, Akutsu T, Setomaru T, Abe K, Kikuchi A, Umezu M, Okano T (2002) Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ Res 90:e40–e48

    CrossRef  Google Scholar 

  12. Matsuda N, Shimizu T, Yamato M, Okano T (2007) Tissue engineering based on cell sheet technology. Adv Mater 19:3089–3099

    CrossRef  Google Scholar 

  13. Yang J, Yamato M, Shimizu T, Sekine H, Ohashi K, Kanzaki M, Ohki T, Nishida K, Okano T (2007) Reconstruction of functional tissues with cell sheet engineering. Biomaterials 28:5033–5043

    CrossRef  Google Scholar 

  14. Obokata H, Yamato M, Tsuneda S, Okano T (2011) Reproducible subcutaneous transplantation of cell sheets into recipient mice. Nat Protoc 6:1053–1059

    CrossRef  Google Scholar 

  15. Haraguchi Y, Shimizu T, Sasagawa T, Sekine H, Sakaguchi K, Kikuchi T, Sekine W, Sekiya S, Yamato M, Umezu M, Okano T (2012) Fabrication of functional three-dimensional tissues by stacking cell sheets in vitro. Nat Protoc 7:850–858

    CrossRef  Google Scholar 

  16. Memon IA, Sawa Y, Fukushima N, Matsumiya G, Miyagawa S, Taketani S, Sakakida SK, Kondoh H, Aleshin AN, Shimizu T, Okano T, Matsuda H (2005) Repair of impaired myocardium by means of implantation of engineered autologous myoblast sheets. J Thorac Cardiovasc Surg 130:1333–1341

    CrossRef  Google Scholar 

  17. Sekine H, Shimizu T, Dobashi I, Matsuura K, Hagiwara N, Takahashi M, Kobayashi E, Yamato M, Okano T (2011) Cardiac cell sheet transplantation improves damaged heart function via uperior cell survival in comparison with dissociated cell injection. Tissue Eng Part A 17:2973–2980

    CrossRef  Google Scholar 

  18. Wei F, Qu C, Song T, Ding G, Fan Z, Liu D, Liu Y, Zhang C, Shi S, Wang S (2011) Vitamin C treatment promotes mesenchymal stem cell sheet formation and tissue regeneration by elevating telomerase activity. J Cell Physiol 227:3216–3224

    CrossRef  Google Scholar 

  19. Nishida K, Yamato M, Hayashida Y, Watanabe K, Yamamoto K, Adachi E, Nagai S, Kikuchi A, Maeda N, Watanabe H, Okano T, Tano Y (2004) Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N Engl J Med 351:1187–1196

    CrossRef  Google Scholar 

  20. Ohki T, Yamato M, Ota M, Takagi R, Murakami D, Kondo M, Sasaki R, Namiki H, Okano T, Yamamoto M (2012) Prevention of esophageal stricture after endoscopic submucosal dissection using tissue-engineered cell sheets. Gastroenterology 143:582–588

    CrossRef  Google Scholar 

  21. Sawa Y, Miyagawa S, Sakaguchi T, Fujita T, Matsuyama A, Saito A, Shimizu T, Okano T (2012) Tissue engineered myoblast sheets improved cardiac function sufficiently to discontinue LVAS in a patient with DCM: report of a case. Surg Today 42:181–184

    CrossRef  Google Scholar 

  22. Burillon C, Huot L, Justin V, Nataf S, Chapuis F, Decullier E, Damour O (2012) Transplantation for the treatment of corneal limbal epithelial stem cell deficiency. Invest Ophthalmol Vis Sci 53:1325–1331

    CrossRef  Google Scholar 

  23. Nishida K, Yamato M, Hayashida Y, Watanabe K, Maeda N, Watanabe H, Yamamoto K, Nagai S, Kikuchi A, Tano Y, Okano T (2004) Functional bioengineered corneal epithelial sheet grafts from corneal stem cells expanded ex vivo on a temperature-responsive cell culture surface. Transplantation 77:379–385

    CrossRef  Google Scholar 

  24. Sekine H, Shimizu T, Kosaka S, Kobayashi E, Okano T (2006) Cardiomyocyte bridging between hearts and bioengineered myocardial tissues with mesenchymal transition of mesothelial cells. J Heart Lung Transplant 25:324–332

    CrossRef  Google Scholar 

  25. Haraguchi Y, Shimizu T, Yamato M, Kikuchi A, Okano T (2006) Electrical coupling of cardiomyocyte sheets occurs rapidly via functional gap junction formation. Biomaterials 27:4765–4774

    CrossRef  Google Scholar 

  26. Ohashi K, Yokoyama T, Yamato M, Kuge H, Kanehiro H, Tsutsumi M, Amanuma T, Iwata H, Yang J, Okano T, Nakajima Y (2007) Engineering functional two- and three-dimensional liver systems in vivo using hepatic tissue sheets. Nat Med 13:880–885

    CrossRef  Google Scholar 

  27. Tsuda Y, Shimizu T, Yamato M, Kikuchi A, Sasagawa T, Sekiya S, Kobayashi J, Chen G, Okano T (2007) Cellular control of tissue architectures using a three-dimensional tissue fabrication technique. Biomaterials 28:4939–4946

    CrossRef  Google Scholar 

  28. Kanzaki M, Yamato M, Yang J, Sekine H, Takagi R, Isaka T, Okano T, Onuki T (2008) Functional closure of visceral pleural defects by autologous tissue engineered cell sheets. Eur J Cardiothorac Surg 34:864–869

    CrossRef  Google Scholar 

  29. Kobayashi H, Shimizu T, Yamato M, Tono K, Masuda H, Asahara T, Kasanuki H, Okano T (2008) Fibroblast sheets co-cultured with endothelial progenitor cells improve cardiac function of infarcted hearts. J Artif Organs 11:141–147

    CrossRef  Google Scholar 

  30. Iwata T, Yamato M, Tsuchioka H, Takagi R, Mukobata S, Washio K, Okano T, Ishikawa I (2009) Periodontal regeneration with multi-layered periodontal ligament-derived cell sheets in a canine model. Biomaterials 30:2716–2723

    CrossRef  Google Scholar 

  31. Maeda M, Yamato M, Kanzaki M, Iseki H, Okano T (2009) Thoracoscopic cell sheet transplantation with a novel device. J Tissue Eng Regen Med 3:255–259

    CrossRef  Google Scholar 

  32. Yaji N, Yamato M, Yang J, Okano T, Hori S (2009) Transplantation of tissue-engineered retinal pigment epithelial cell sheets in a rabbit model. Biomaterials 30:797–803

    CrossRef  Google Scholar 

  33. Asakawa N, Shimizu T, Tsuda Y, Sekiya S, Sasagawa T, Yamato M, Fukai F, Okano T (2010) Pre-vascularization of in vitro three-dimensional tissues created by cell sheet engineering. Biomaterials 31:3903–3909

    CrossRef  Google Scholar 

  34. Sasagawa T, Shimizu T, Sekiya S, Haraguchi Y, Yamato M, Sawa Y, Okano T (2010) Design of prevascularized three-dimensional cell-dense tissues using a cell sheet stacking manipulation technology. Biomaterials 31:1646–1654

    CrossRef  Google Scholar 

  35. Haraguchi Y, Sekine W, Shimizu T, Yamato M, Miyoshi S, Umezawa A, Okano T (2010) Development of a new assay system for evaluating the permeability of various substances through three-dimensional tissue. Tissue Eng Part C Methods 16:685–692

    CrossRef  Google Scholar 

  36. Sekine W, Haraguchi Y, Shimizu T, Umezawa A, Okano T (2011) Thickness limitation and cell viability of multi-layered cell sheets and overcoming the diffusion limit by a porous-membrane culture insert. J Biochip Tissue Chip S2:001

    Google Scholar 

  37. Haraguchi Y, Matsuura K, Shimizu T, Yamato M, Okano T (2013) Simple suspension culture system of human iPS cells maintaining their pluripotency for cardiac cell sheet engineering. J Tissue Eng Regen Med. doi:10.1002/term.1761

    Google Scholar 

  38. Haraguchi Y, Shimizu T, Yamato M, Okano T (2012) Cell therapy and tissue engineering for cardiovascular disease. stem cells. Trans Med 1:136–141

    Google Scholar 

  39. Penn MS, Pastore J, Miller T, Aras R (2011) SDF-1 in myocardial repair. Gene Ther 19:583–587

    CrossRef  Google Scholar 

  40. Lavu M, Gundewar S, Lefer DJ (2011) Gene therapy for ischemic heart disease. J Mol Cell Cardiol 50:742–750

    CrossRef  Google Scholar 

  41. Boron WF, Boulpaep EL (2003) Medical physiology. In: Radisic M, Michael VM (eds) The cardiovascular system (Chapter IV). Elsevier Science, Philadelphia, pp 421–590

    Google Scholar 

  42. Matsuura K, Wada M, Shimizu T, Haraguchi Y, Sato F, Sugiyama K, Konishi K, Shiba Y, Ichikawa H, Tachibana A, Ikeda U, Yamato M, Hagiwara N, Okano T (2012) Creation of human cardiac cell sheets using pluripotent stem cells. Biochem Biophys Res Commun 425:321–327

    CrossRef  Google Scholar 

  43. Kawamura M, Miyagawa S, Miki K, Saito A, Fukushima S, Higuchi T, Kawamura T, Kuratani T, Daimon T, Shimizu T, Okano T, Sawa Y (2012) Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model. Circulation 126:S29–S37

    CrossRef  Google Scholar 

Download references

Acknowledgement

Upon the development of the cell-sheet transfer/transplantation device in this study, the authors referred the basic concept of SWTL, a food-handling devise, developed by Furukawakikou Co., LTd. (Niigata, Japan). The authors are grateful to the members of Furukawakikou. This work was supported by grants from a new area of Hyper Bio Assembler for 3D Cellular Systems (BioAssembler) Project, a Grant-in-Aid for Japan Society for the Promotion of Science (JSPS) Fellows (23•7758), the Global Center of Excellence Program, Multidisciplinary Education and Technology and Research Center for Regenerative Medicine (MERCREM), Innovation Center for Fusion of Advanced Technologies in the Special Coordination Funds for Promoting Science, and the High-Tech Research Center Program from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan, and JSPS through the “Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program),” initiated by the Council for Science and Technology Policy (CSTP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Yamato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Tadakuma, K. et al. (2015). Cell Scooper: A Device for the Rapid Transfer of Living Cell Sheet. In: Arai, T., Arai, F., Yamato, M. (eds) Hyper Bio Assembler for 3D Cellular Systems. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55297-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55297-0_14

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55296-3

  • Online ISBN: 978-4-431-55297-0

  • eBook Packages: EngineeringEngineering (R0)