Cell Scooper: A Device for the Rapid Transfer of Living Cell Sheet

  • Kenjiro Tadakuma
  • Nobuyuki Tanaka
  • Yuji Haraguchi
  • Mitsuru Higashimori
  • Makoto Kaneko
  • Tatsuya Shimizu
  • Masayuki YamatoEmail author
  • Teruo Okano


In this study, we developed a device that could easily, rapidly, and completely transfer cell sheets from one material to another or transplant cell sheets onto the dorsal subcutaneous tissues of rats without leaving residual cells. Because the manipulation is as simple as pipetting, technical expertise is not required to transfer cell sheets very rapidly (the transfer time was 3.7 ± 1.6 s) using the device compared with that of a conventional method using a pipette (430 ± 180 s). After transfer by the device, C2C12 skeletal myoblast sheets showed active cell metabolism, cell viability, and very high production of vascular endothelial growth factor and stromal-derived factor-1α, indicating transfer without cell damage. Cardiac cell sheets after transfer showed spontaneous and synchronous beating, indicating intact cell-cell junctions and ion channel proteins on the cell opsurface. In addition, the device allowed us to transfer C2C12 cell sheets onto soft, rugged and curved surfaces such as human hands. Furthermore, cardiac cell sheets adhered rapidly and tightly onto the dorsal subcutaneous tissues of rats. This transfer/transplantation device may be a powerful tool in cell sheet-based tissue engineering and regenerative medicine.


Mechanism Device Scooping Transfer 



Upon the development of the cell-sheet transfer/transplantation device in this study, the authors referred the basic concept of SWTL, a food-handling devise, developed by Furukawakikou Co., LTd. (Niigata, Japan). The authors are grateful to the members of Furukawakikou. This work was supported by grants from a new area of Hyper Bio Assembler for 3D Cellular Systems (BioAssembler) Project, a Grant-in-Aid for Japan Society for the Promotion of Science (JSPS) Fellows (23•7758), the Global Center of Excellence Program, Multidisciplinary Education and Technology and Research Center for Regenerative Medicine (MERCREM), Innovation Center for Fusion of Advanced Technologies in the Special Coordination Funds for Promoting Science, and the High-Tech Research Center Program from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan, and JSPS through the “Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program),” initiated by the Council for Science and Technology Policy (CSTP).


  1. 1.
    Menasché P (2008) Skeletal myoblasts and cardiac repair. J Mol Cell Cardiol 45:545–553CrossRefGoogle Scholar
  2. 2.
    Atala A, Lanza R, Thomson JA, Nerem R (2011) Principles of regenerative medicine, 2nd edn. Academic Press, San DiegoGoogle Scholar
  3. 3.
    Bolli R, Chugh AR, D’Amario D, Loughran JH, Stoddard MF, Ikram S, Beache GM, Wagner SG, Leri A, Hosoda T, Sanada F, Elmore JB, Goichberg P, Cappetta D, Solankhi NK, Fahsah I, Rokosh DG, Slaughter MS, Kajstura J, Anversa P (2011) Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 378:1847–1857CrossRefGoogle Scholar
  4. 4.
    Zimmermann WH, Melnychenko I, Wasmeier G, Didié M, Naito H, Nixdorff U, Hess A, Budinsky L, Brune K, Michaelis B, Dhein S, Schwoerer A, Ehmke H, Eschenhagen T (2006) Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat Med 12:452–458CrossRefGoogle Scholar
  5. 5.
    Chachques JC, Trainini JC, Lago N, Masoli OH, Barisani JL, Cortes-Morichetti M, Schussler O, Carpentier A (2007) Myocardial assistance by grafting a new bioartificial upgraded myocardium (MAGNUM clinical trial): one year follow-up. Cell Transplant 16:927–934CrossRefGoogle Scholar
  6. 6.
    Shinoka T, Breuer C (2008) Tissue-engineered blood vessels in pediatric cardiac surgery. Yale J Biol Med 81:161–166Google Scholar
  7. 7.
    Lee K, Chan CK, Patil N, Goodman SB (2009) Cell therapy for bone regeneration-bench to bedside. J Biomed Mater Res Part B Appl Biomater 89:252–263CrossRefGoogle Scholar
  8. 8.
    Iwasa J, Engebretsen L, Shima Y, Ochi M (2009) Clinical application of scaffolds for cartilage tissue engineering. Knee Surg Sports Traumatol Arthrosc 17:561–577CrossRefGoogle Scholar
  9. 9.
    Yamada N, Okano T, Sakai H, Karikusa F, Sawasaki Y, Sakurai Y (1990) Thermo-responsive polymeric surface: control of attachment and detachment of cultured cells. Makromol Chem Rapid Commun 11:571–576CrossRefGoogle Scholar
  10. 10.
    Okano T, Yamada H, Sakai H, Sakurai Y (1993) A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly (N-isopropylacrylamide). J Biomed Mater Res 27:1243–1251CrossRefGoogle Scholar
  11. 11.
    Shimizu T, Yamato M, Isoi Y, Akutsu T, Setomaru T, Abe K, Kikuchi A, Umezu M, Okano T (2002) Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ Res 90:e40–e48CrossRefGoogle Scholar
  12. 12.
    Matsuda N, Shimizu T, Yamato M, Okano T (2007) Tissue engineering based on cell sheet technology. Adv Mater 19:3089–3099CrossRefGoogle Scholar
  13. 13.
    Yang J, Yamato M, Shimizu T, Sekine H, Ohashi K, Kanzaki M, Ohki T, Nishida K, Okano T (2007) Reconstruction of functional tissues with cell sheet engineering. Biomaterials 28:5033–5043CrossRefGoogle Scholar
  14. 14.
    Obokata H, Yamato M, Tsuneda S, Okano T (2011) Reproducible subcutaneous transplantation of cell sheets into recipient mice. Nat Protoc 6:1053–1059CrossRefGoogle Scholar
  15. 15.
    Haraguchi Y, Shimizu T, Sasagawa T, Sekine H, Sakaguchi K, Kikuchi T, Sekine W, Sekiya S, Yamato M, Umezu M, Okano T (2012) Fabrication of functional three-dimensional tissues by stacking cell sheets in vitro. Nat Protoc 7:850–858CrossRefGoogle Scholar
  16. 16.
    Memon IA, Sawa Y, Fukushima N, Matsumiya G, Miyagawa S, Taketani S, Sakakida SK, Kondoh H, Aleshin AN, Shimizu T, Okano T, Matsuda H (2005) Repair of impaired myocardium by means of implantation of engineered autologous myoblast sheets. J Thorac Cardiovasc Surg 130:1333–1341CrossRefGoogle Scholar
  17. 17.
    Sekine H, Shimizu T, Dobashi I, Matsuura K, Hagiwara N, Takahashi M, Kobayashi E, Yamato M, Okano T (2011) Cardiac cell sheet transplantation improves damaged heart function via uperior cell survival in comparison with dissociated cell injection. Tissue Eng Part A 17:2973–2980CrossRefGoogle Scholar
  18. 18.
    Wei F, Qu C, Song T, Ding G, Fan Z, Liu D, Liu Y, Zhang C, Shi S, Wang S (2011) Vitamin C treatment promotes mesenchymal stem cell sheet formation and tissue regeneration by elevating telomerase activity. J Cell Physiol 227:3216–3224CrossRefGoogle Scholar
  19. 19.
    Nishida K, Yamato M, Hayashida Y, Watanabe K, Yamamoto K, Adachi E, Nagai S, Kikuchi A, Maeda N, Watanabe H, Okano T, Tano Y (2004) Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N Engl J Med 351:1187–1196CrossRefGoogle Scholar
  20. 20.
    Ohki T, Yamato M, Ota M, Takagi R, Murakami D, Kondo M, Sasaki R, Namiki H, Okano T, Yamamoto M (2012) Prevention of esophageal stricture after endoscopic submucosal dissection using tissue-engineered cell sheets. Gastroenterology 143:582–588CrossRefGoogle Scholar
  21. 21.
    Sawa Y, Miyagawa S, Sakaguchi T, Fujita T, Matsuyama A, Saito A, Shimizu T, Okano T (2012) Tissue engineered myoblast sheets improved cardiac function sufficiently to discontinue LVAS in a patient with DCM: report of a case. Surg Today 42:181–184CrossRefGoogle Scholar
  22. 22.
    Burillon C, Huot L, Justin V, Nataf S, Chapuis F, Decullier E, Damour O (2012) Transplantation for the treatment of corneal limbal epithelial stem cell deficiency. Invest Ophthalmol Vis Sci 53:1325–1331CrossRefGoogle Scholar
  23. 23.
    Nishida K, Yamato M, Hayashida Y, Watanabe K, Maeda N, Watanabe H, Yamamoto K, Nagai S, Kikuchi A, Tano Y, Okano T (2004) Functional bioengineered corneal epithelial sheet grafts from corneal stem cells expanded ex vivo on a temperature-responsive cell culture surface. Transplantation 77:379–385CrossRefGoogle Scholar
  24. 24.
    Sekine H, Shimizu T, Kosaka S, Kobayashi E, Okano T (2006) Cardiomyocyte bridging between hearts and bioengineered myocardial tissues with mesenchymal transition of mesothelial cells. J Heart Lung Transplant 25:324–332CrossRefGoogle Scholar
  25. 25.
    Haraguchi Y, Shimizu T, Yamato M, Kikuchi A, Okano T (2006) Electrical coupling of cardiomyocyte sheets occurs rapidly via functional gap junction formation. Biomaterials 27:4765–4774CrossRefGoogle Scholar
  26. 26.
    Ohashi K, Yokoyama T, Yamato M, Kuge H, Kanehiro H, Tsutsumi M, Amanuma T, Iwata H, Yang J, Okano T, Nakajima Y (2007) Engineering functional two- and three-dimensional liver systems in vivo using hepatic tissue sheets. Nat Med 13:880–885CrossRefGoogle Scholar
  27. 27.
    Tsuda Y, Shimizu T, Yamato M, Kikuchi A, Sasagawa T, Sekiya S, Kobayashi J, Chen G, Okano T (2007) Cellular control of tissue architectures using a three-dimensional tissue fabrication technique. Biomaterials 28:4939–4946CrossRefGoogle Scholar
  28. 28.
    Kanzaki M, Yamato M, Yang J, Sekine H, Takagi R, Isaka T, Okano T, Onuki T (2008) Functional closure of visceral pleural defects by autologous tissue engineered cell sheets. Eur J Cardiothorac Surg 34:864–869CrossRefGoogle Scholar
  29. 29.
    Kobayashi H, Shimizu T, Yamato M, Tono K, Masuda H, Asahara T, Kasanuki H, Okano T (2008) Fibroblast sheets co-cultured with endothelial progenitor cells improve cardiac function of infarcted hearts. J Artif Organs 11:141–147CrossRefGoogle Scholar
  30. 30.
    Iwata T, Yamato M, Tsuchioka H, Takagi R, Mukobata S, Washio K, Okano T, Ishikawa I (2009) Periodontal regeneration with multi-layered periodontal ligament-derived cell sheets in a canine model. Biomaterials 30:2716–2723CrossRefGoogle Scholar
  31. 31.
    Maeda M, Yamato M, Kanzaki M, Iseki H, Okano T (2009) Thoracoscopic cell sheet transplantation with a novel device. J Tissue Eng Regen Med 3:255–259CrossRefGoogle Scholar
  32. 32.
    Yaji N, Yamato M, Yang J, Okano T, Hori S (2009) Transplantation of tissue-engineered retinal pigment epithelial cell sheets in a rabbit model. Biomaterials 30:797–803CrossRefGoogle Scholar
  33. 33.
    Asakawa N, Shimizu T, Tsuda Y, Sekiya S, Sasagawa T, Yamato M, Fukai F, Okano T (2010) Pre-vascularization of in vitro three-dimensional tissues created by cell sheet engineering. Biomaterials 31:3903–3909CrossRefGoogle Scholar
  34. 34.
    Sasagawa T, Shimizu T, Sekiya S, Haraguchi Y, Yamato M, Sawa Y, Okano T (2010) Design of prevascularized three-dimensional cell-dense tissues using a cell sheet stacking manipulation technology. Biomaterials 31:1646–1654CrossRefGoogle Scholar
  35. 35.
    Haraguchi Y, Sekine W, Shimizu T, Yamato M, Miyoshi S, Umezawa A, Okano T (2010) Development of a new assay system for evaluating the permeability of various substances through three-dimensional tissue. Tissue Eng Part C Methods 16:685–692CrossRefGoogle Scholar
  36. 36.
    Sekine W, Haraguchi Y, Shimizu T, Umezawa A, Okano T (2011) Thickness limitation and cell viability of multi-layered cell sheets and overcoming the diffusion limit by a porous-membrane culture insert. J Biochip Tissue Chip S2:001Google Scholar
  37. 37.
    Haraguchi Y, Matsuura K, Shimizu T, Yamato M, Okano T (2013) Simple suspension culture system of human iPS cells maintaining their pluripotency for cardiac cell sheet engineering. J Tissue Eng Regen Med. doi:10.1002/term.1761Google Scholar
  38. 38.
    Haraguchi Y, Shimizu T, Yamato M, Okano T (2012) Cell therapy and tissue engineering for cardiovascular disease. stem cells. Trans Med 1:136–141Google Scholar
  39. 39.
    Penn MS, Pastore J, Miller T, Aras R (2011) SDF-1 in myocardial repair. Gene Ther 19:583–587CrossRefGoogle Scholar
  40. 40.
    Lavu M, Gundewar S, Lefer DJ (2011) Gene therapy for ischemic heart disease. J Mol Cell Cardiol 50:742–750CrossRefGoogle Scholar
  41. 41.
    Boron WF, Boulpaep EL (2003) Medical physiology. In: Radisic M, Michael VM (eds) The cardiovascular system (Chapter IV). Elsevier Science, Philadelphia, pp 421–590Google Scholar
  42. 42.
    Matsuura K, Wada M, Shimizu T, Haraguchi Y, Sato F, Sugiyama K, Konishi K, Shiba Y, Ichikawa H, Tachibana A, Ikeda U, Yamato M, Hagiwara N, Okano T (2012) Creation of human cardiac cell sheets using pluripotent stem cells. Biochem Biophys Res Commun 425:321–327CrossRefGoogle Scholar
  43. 43.
    Kawamura M, Miyagawa S, Miki K, Saito A, Fukushima S, Higuchi T, Kawamura T, Kuratani T, Daimon T, Shimizu T, Okano T, Sawa Y (2012) Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model. Circulation 126:S29–S37CrossRefGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  • Kenjiro Tadakuma
    • 2
  • Nobuyuki Tanaka
    • 1
  • Yuji Haraguchi
    • 1
  • Mitsuru Higashimori
    • 2
  • Makoto Kaneko
    • 2
  • Tatsuya Shimizu
    • 1
  • Masayuki Yamato
    • 1
    Email author
  • Teruo Okano
    • 1
  1. 1.Graduate School of MedicineTokyo Women’s Medical University TokyoTokyoJapan
  2. 2.Graduate School of EngineeringOsaka UniversityTokyoJapan

Personalised recommendations