Skip to main content

\(\boldsymbol{e}\)-Central Elements

  • Chapter
  • First Online:
Harmonic Analysis on Exponential Solvable Lie Groups

Part of the book series: Springer Monographs in Mathematics ((SMM))

  • 1246 Accesses

Abstract

In order to practise a more detailed analysis of monomial representations, we suppose in this chapter that \(G = \text{exp}\ \mathfrak{g}\) is a connected and simply connected nilpotent Lie group with Lie algebra \(\mathfrak{g}\). Let us introduce e-central elements due to Corwin and Greenleaf [17]. Let

$$\displaystyle{ \{0\} = \mathfrak{g}_{0} \subset \mathfrak{g}_{1} \subset \cdots \subset \mathfrak{g}_{n-1} \subset \mathfrak{g}_{n} = \mathfrak{g},\ \mbox{ dim}(\mathfrak{g}_{k}) = k\ (0 \leq k \leq n) }$$
(9.1.1)

be a composition series of ideals of \(\mathfrak{g}\). Let {X j }1 ≤ j ≤ n be a Malcev basis of \(\mathfrak{g}\) according to this composition series, i.e. \(X_{j} \in \mathfrak{g}_{j}\setminus \mathfrak{g}_{j-1}\ (1 \leq j \leq n)\) and \(\{X_{j}^{{\ast}}\}_{1\leq j\leq n}\) its dual basis in \(\mathfrak{g}^{{\ast}}\). We denote the coordinates of \(\ell\in \mathfrak{g}^{{\ast}}\) by \((\ell_{1},\ldots,\ell_{n}),\ell_{j} =\ell (X_{j})\). Then \(\mathfrak{g}_{j}^{\perp } = \langle X_{j+1}^{{\ast}},\ldots,X_{n}^{{\ast}}\rangle _{\mathbb{R}} \subset \mathfrak{g}^{{\ast}},\mathfrak{g}_{j}^{{\ast}}\mathop{\cong}\mathfrak{g}^{{\ast}}/\mathfrak{g}_{j}^{\perp }\) and the projection \(p_{j}: \mathfrak{g}^{{\ast}}\rightarrow \mathfrak{g}_{j}^{{\ast}}\) intertwines the actions of G on \(\mathfrak{g}^{{\ast}}\) and \(\mathfrak{g}_{j}^{{\ast}}\). For \(\ell\in \mathfrak{g}^{{\ast}}\), we define \(e_{j}(\ell) = \mbox{ dim}\big(G\cdot p_{j}(\ell)\big),e(\ell) = (e_{1}(\ell),\ldots,e_{n}(\ell))\) and set \(\mathcal{E} =\{ e(\ell);\ell\in \mathfrak{g}^{{\ast}}\}\). We also recognize e j () = dim(G j ⋅ ) with \(G_{j} = \text{exp}(\mathfrak{g}_{j})\). In fact,

$$\displaystyle\begin{array}{rcl} & & \mbox{ dim}\big(G\cdot p_{j}(\ell)\big) = \mbox{ dim}\big(\mathfrak{g}/\mathfrak{g}_{j}^{\ell}\big) = \mbox{ dim}(\mathfrak{g}/\mathfrak{g}(\ell)) -\mbox{ dim}\big(\mathfrak{g}_{ j}^{\ell}/\mathfrak{g}(\ell)\big) {}\\ & & = \mbox{ dim}(\mathfrak{g}/\mathfrak{g}(\ell)) -\big (\mbox{ dim}(\mathfrak{g}/\mathfrak{g}(\ell)) -\mbox{ dim}\big(\mathfrak{g}_{j}/\mathfrak{g}_{j}(\ell)\big)\big) = \mbox{ dim}(G_{j}\cdot \ell). {}\\ \end{array}$$

For \(e \in \mathcal{E}\) we define the G-invariant layer \(U_{e} =\{\ell\in \mathfrak{g}^{{\ast}};e(\ell) = e\}\). With e 0 = 0 we define the set of jump indices \(S(e) =\{ 1 \leq j \leq n;e_{j} = e_{j-1} + 1\}\) and that of non-jump indices \(T(e) =\{ 1 \leq j \leq n;e_{j} = e_{j-1}\}\). \(\mathcal{U}(\mathfrak{g})\) being the enveloping algebra of \(\mathfrak{g}_{\mathbb{C}}\), \(A \in \mathcal{U}(\mathfrak{g})\) is called an e-central element if, with \(\pi _{\ell} =\hat{\rho } _{G}(\ell)\), π (A) = d π (A) is a scalar operator for any  ∈ U e .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnal, D., Fujiwara, H., Ludwig, J.: Opérateurs d’entrelacement pour les groupes de Lie exponentiels. Am. J. Math. 118, 839–878 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arsac, G.: Opérateurs compacts dans l’espace d’une représentation. C. R. Acad. Sci. Paris 286, 189–192 (1982)

    Google Scholar 

  3. Auslander, L., Kostant, B.: Polarization and unitary representations of solvable Lie groups. Invent. Math. 14, 255–354 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  4. Auslander, L., Moore, C.C.: Unitary representations of solvable Lie groups. Mem. Am. Math. Soc. 62 pp. 199 (1966)

    MathSciNet  Google Scholar 

  5. Baklouti, A., Fujiwara, H.: Opérateurs différentiels associés à certaines représentations unitaires d’un groupe de Lie résoluble exponentiel. Compos. Math. 139, 29–65 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Baklouti, A., Fujiwara, H.: Commutativité des opérateurs différentiels sur l’espace des représentations restreintes d’un groupe de Lie nilpotent. J. Math. Pures Appl. 83, 137–161 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Baklouti, A., Fujiwara, H., Ludwig, J.: Analysis of restrictions of unitary representations of a nilpotent Lie group. Bull. Sci. Math. 129, 187–209 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Benoist, Y.: Espaces symétriques exponentiels. Thèse de 3e cycle, Univ. Paris VII (1983)

    Google Scholar 

  9. Benoist, Y.: Multiplicité un pour les espaces symétriques exponentiels. Mém. Soc. Math. France 15, 1–37 (1984)

    MATH  MathSciNet  Google Scholar 

  10. Bernat, P., et al.: Représentations des groupes de Lie résolubles. Dunod, Paris (1972)

    MATH  Google Scholar 

  11. Blattner, R.J.: On induced representations I. Am. J. Math. 83, 79–98 (1961); Blattner, R.J.: On induced representations II. Am. J. Math. 83, 499–512 (1961)

    Google Scholar 

  12. Bonnet, P.: Transformation de Fourier des distributions de type posotif sur un groupe de Lie unimodulaire. J. Funct. Anal. 55, 220–246 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  13. Bourbaki, N.: Intégration. Hermann, Paris (1967)

    Google Scholar 

  14. Corwin, L., Greenleaf, F.P., Grélaud, G.: Direct integral decompositions and multiplicities for induced representations of nilpotent Lie groups. Trans. Am. Math. Soc. 304, 549–583 (1987)

    Article  MATH  Google Scholar 

  15. Corwin, L., Greenleaf, F.P.: Spectrum and multiplicities for restrictions of unitary representations in nilpotent Lie groups. Pac. J. Math. 135, 233–267 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  16. Corwin, L., Greenleaf, F.P.: Representations of Nilpotent Lie Groups and Their Applications, Part I: Basic Theory and Examples. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  17. Corwin, L., Greenleaf, F.P.: Commutativity of invariant differential operators on nilpotent homogeneous spaces with finite multiplicity. Commun. Pure Appl. Math. 45, 681–748 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  18. Dixmier, J.: L’application exponentielle dans les groupes de Lie résolubles. Bull. Soc. Math. France 85, 113–121 (1957)

    MATH  MathSciNet  Google Scholar 

  19. Dixmier, J.: Représentations irréductibles des algèbres de Lie nilpotentes. Anals Acad. Brasil. Ci. 35, 491–519 (1963)

    MATH  MathSciNet  Google Scholar 

  20. Dixmier, J.: Les C*-algèbres et leurs représentations. Gauthier-Villars, Paris (1964)

    Google Scholar 

  21. Dixmier, J.: Enveloping algebras. Am. Math. Soc. Graduate Studies in Mathematics, vol. 11 (1996)

    Google Scholar 

  22. Duflo, M.: Open problems in representation theory of Lie groups. In: Oshima, T. (ed.) Conference on Analysis on Homogrneous Spaces, pp 1–5. Katata in Japan (1986)

    Google Scholar 

  23. Effros, E.G.: Transformation groups and C*-algebras. Ann. Math. 81, 38–55 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  24. Fell, J.M.G.: The dual space of C*-algebras. Trans. Am. Math. Soc. 94, 365–403 (1960)

    MATH  MathSciNet  Google Scholar 

  25. Fell, J.M.G.: A new proof that nilpotent groups are CCR. Proc. Am. Math. Soc. 107, 93–99 (1962)

    Article  MathSciNet  Google Scholar 

  26. Fell, J.M.G.: Weak containment and induced representations of groups I. Can. J. Math. 14, 237–268 (1962); Fell, J.M.G.: Weak containment and induced representations of groups II. Trans. Am. Math. Soc. 110, 424–447 (1964)

    Google Scholar 

  27. Fujiwara, H.: On unitary representations of exponential groups. J. Fac. Sci. Univ. Tokyo 21, 465–471 (1974)

    MATH  Google Scholar 

  28. Fujiwara, H.: On holomorphically induced representations of exponential groups. Jpn. J. Math. 4, 109–170 (1978)

    MATH  Google Scholar 

  29. Fujiwara, H.: Polarisations réelles et représentations associées d’un groupe de Lie résoluble. J. Funct. Anal. 60, 102–125 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  30. Fujiwara, H.: Représentations monomiales des groupes de Lie nilpotents. Pac. J. Math. 127, 329–351 (1987)

    MATH  Google Scholar 

  31. Fujiwara, H., Yamagami, S.: Certaines représentations monomiales d’un groupe de Lie résoluble exponentiel. Adv. St. Pure Math. 14, 153–190 (1988)

    MathSciNet  Google Scholar 

  32. Fujiwara, H.: Représentations monomiales des groupes de Lie résolubles exponentiels. In: Duflo, M., Pedersen, N.V., Vergne, M. (eds.) The Orbit Method in Representation Theory. Proceedings of a Conference in Copenhagen, pp. 61–84. Birkhäser, Boston (1990)

    Chapter  Google Scholar 

  33. Fujiwara, H.: La formule de Plancherel pour les représentations monomiales des groupes de Lie nilpotents. In: Kawazoe, T., Oshima, T., Sano, S. (eds.) Representation Theory of Lie Groups and Lie Algebras. The Proceedings of Fuji-Kawaguchiko Conference, pp. 140–150. World Scientific (1992)

    Google Scholar 

  34. Fujiwara, H.: Sur les restrictions des représentations unitaires des groupes de Lie résolubles exponentiels. Invent. Math. 104, 647–654 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  35. Fujiwara, H., Lion, G., Mehdi, S.: On the commutativity of the algebra of invariant differential operators on certain nilpotent homogeneous spaces. Trans. Am. Math. Soc. 353, 4203–4217 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  36. Fujiwara, H., Lion, G., Magneron, B.: Algèbres de fonctions associées aux représentations monomiales des groupes de Lie nilpotents. Prépub. Math. Univ. Paris 13, 2002–2 (2002)

    Google Scholar 

  37. Fujiwara, H., Lion, G., Magneron, B., Mehdi, S.: Commutativity criterion for certain algebras of invariant differential operators on nilpotent homogeneous spaces. Math. Ann. 327, 513–544 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  38. Fujiwara, H.: Une réciprocité de Frobenius. In: Heyer, H., et al. (eds.) Infinite Dimensional Harmonic Analysis, pp. 17–35. World Scientific (2005)

    Google Scholar 

  39. Fujiwara, H.: Unitary representations of exponential solvable Lie groups–Orbit method (Japanese). Sugakushobo Co. (2010)

    Google Scholar 

  40. Gindikin, G., Pjatetskii-Shapiro, I.I., Vinberg, E.E.: Geometry of homogeneous bounded domains. C. I. M. E. 3, 3–87 (1967)

    Google Scholar 

  41. Godement, R.: Les fonctions de type positif et la théorie des groupes. Trans. Am. Math. Soc. 63, 1–84 (1948)

    MATH  MathSciNet  Google Scholar 

  42. Grélaud, G.: Désintégration des représentations induites des groupes de Lie résolubles exponentiels. Thèse de 3e cycle, Univ. de Poitiers (1973)

    Google Scholar 

  43. Grélaud, G.: La formule de Plancherel pour les espaces homogènes des groupes de Heisenberg. J. Reine Angew. Math. 398, 92–100 (1989)

    MATH  MathSciNet  Google Scholar 

  44. Halmos, P.R.: Measure Theory. D. Van Nostrand Company, Inc., New York (1950)

    Book  MATH  Google Scholar 

  45. Hochschild, G.: The Structure of Lie Groups. Holden-Day, San Francisco (1965)

    MATH  Google Scholar 

  46. Howe, R.: On a connection between nilpotent groups and oscillatory integrals associated to singularities. Pac. J. Math. 73, 329–364 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  47. Humphreys, J.: Linear algebraic groups. In: Graduate Texts in Mathematics, vol. 21. Springer, New York (1975)

    Google Scholar 

  48. Kirillov, A.A.: Unitary representations of nilpotent Lie groups. Russ. Math. Surv. 17, 57–110 (1962)

    Article  MathSciNet  Google Scholar 

  49. Kirillov, A.A.: Elements of the Theory of Representations. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  50. Kirillov, A.A.: Lectures on the orbit method. Am. Math. Soc. Graduate Studies in Mathematics, vol. 64 (2004)

    Google Scholar 

  51. Leptin, H., Ludwig, J.: Unitary Representation Theory of Exponential Lie Groups. Walter de Gruyter, Berlin (1994)

    Book  MATH  Google Scholar 

  52. Lion, G.: Indice de Maslov et représentation de Weil. Pub. Math. Univ. Paris VII 2, 45–79 (1978)

    MathSciNet  Google Scholar 

  53. Lion, G., Vergne, M.: The Weil Representation, Maslov Index and Theta Series. Birkhäuser, Boston (1980)

    MATH  Google Scholar 

  54. Lipsman, R.: Attributes and applications of the Corwin–Greenleaf multiplicity function. Contemp. Math. 177, 27–46 (1994)

    Article  MathSciNet  Google Scholar 

  55. Mackey, G.W.: Induced representations of locally compact groups I. Ann. Math. 55, 101–139 (1952); Mackey, G.W.: Induced representations of locally compact groups II. Ann. Math. 58, 193–221 (1953)

    Google Scholar 

  56. Mackey, G.W.: The theory of unitary group representations. Chicago Lectures in Math. (1976)

    Google Scholar 

  57. Moore, C.C.: Representations of solvable and nilpotent groups and harmonic analysis on nil and solvmanifolds. Proc. Symp. Pure Math. 26, 3–44 (1973)

    Article  Google Scholar 

  58. Pedersen, N.: On the infinitesimal kernel of irreducible representations of nilpotent Lie groups. Bull. Soc. Math. France 112, 423–467 (1984)

    MATH  MathSciNet  Google Scholar 

  59. Penney, R.: Abstract Plancherel theorem and a Frobenius reciprocity theorem. J. Funct. Anal. 18, 177–190 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  60. Pjatetskii-Shapiro, I.I.: Geometry of Classical Domains and Theory of Automorphic Functions. Gordon and Breach, New York (1969)

    Google Scholar 

  61. Pjatetskii-Shapiro, I.I.: On bounded homogeneous domains in an n-dimensional complex space. Izv. Acad. Nauk 26, 107–124 (1962)

    Google Scholar 

  62. Pontrjagin, L.: Topological Groups. Gordon   &  Breach Science Publishers (1966)

    Google Scholar 

  63. Poulsen, N.S.: On C -vectors and intertwining bilinear forms for representations of Lie groups. J. Funct. Anal. 9, 87–120 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  64. Pukanszky, L.: Leçon sur les représentations des groupes. Dunod, Paris (1967)

    Google Scholar 

  65. Pukanszky, L.: Representations of solvable Lie groups. Ann. Sci. École Norm. Sup. 4, 464–608 (1971)

    MathSciNet  Google Scholar 

  66. Raïs, M.: Représentations des groupes de Lie nilpotents et méthode des orbites, Chap 5. In: d’Analyse Harmonique. Cours du CIMPA (1983)

    Google Scholar 

  67. Rossi, H.: Lectures on representations of groups of holomorphic transformations of Siegel domains. Lecture Notes, Brandeis University (1972)

    MATH  Google Scholar 

  68. Rossi, H., Vergne, M.: Representations of certain solvable Lie groups on Hilbert spaces of holomorphic functions and the application to the holomorphic discrete series of a semisimple Lie group. J. Funct. Anal. 13, 324–389 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  69. Saito, M.: Sur certains groupes de Lie résolubles, I. Sci. Papers College Gen. Ed. Univ. Tokyo 7, 1–11 (1957); Saito, M.: Sur certains groupes de Lie résolubles, II. Sci. Papers College Gen. Ed. Univ. Tokyo 7, 157–168 (1957)

    Google Scholar 

  70. Satake, I.: Talks on Lie Groups (Japanese). Nihonhyôronsha (1993)

    Google Scholar 

  71. Satake, I.: Talks on Lie algebras (Japanese). Nihonhyôronsha (2002)

    Google Scholar 

  72. Spanier, H.: Algebraic Topology. McGraw-Hill, New York (1966)

    MATH  Google Scholar 

  73. Sternberg, S.: Lectures on Differential Geometry. Prentice-Hall, Englewood Cliffs (1964)/McGraw-Hill, New York (1966)

    Google Scholar 

  74. Sugiura, M.: Theory of Lie groups (Japanese). Kyôritu Pub. Co. (2001)

    Google Scholar 

  75. Takenouchi, O.: Sur la facteur-représentation des groupes de Lie de type (E). Math. J. Okayama Univ. 7, 151–161 (1957)

    MATH  MathSciNet  Google Scholar 

  76. Treves, F.: Topological Vector Spaces, Distributions and Kernels. Academic, New York (1967)

    MATH  Google Scholar 

  77. Vergne, M.: Étude de certaines représentations induites d’un groupe de Lie résoluble exponentiel. Ann. Sci. Éc. Norm. Sup. 3, 353–384 (1970)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Fujiwara, H., Ludwig, J. (2015). \(\boldsymbol{e}\)-Central Elements. In: Harmonic Analysis on Exponential Solvable Lie Groups. Springer Monographs in Mathematics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55288-8_9

Download citation

Publish with us

Policies and ethics