Skip to main content

Polyol Metabolism and Stress Tolerance in Horticultural Plants

  • Chapter
  • First Online:
Abiotic Stress Biology in Horticultural Plants

Abstract

Various horticultural plants synthesize polyols as major products of photosynthesis in addition to sucrose and starch and use polyols and sucrose as translocated sugars. The parallel presence of two translocated sugars and their metabolic pathway is specific and complicates the comprehension of their roles in physiology and response to stress. This review first describes the metabolism of sorbitol, focusing on sorbitol-specific metabolizing proteins and their physiological roles in Rosaceae fruit trees. In addition, research on sorbitol as a signal molecule and sorbitol-metabolizing proteins regulated by sugar is discussed. A series of studies regarding various Rosaceae fruit trees has revealed the relationship of sorbitol accumulation with abiotic stresses, including drought, salt, cold, and micronutrient deficiency stresses. On the basis of acknowledging the metabolism of sorbitol, the biochemical mechanism of sorbitol accumulation in response to abiotic stress has been investigated. Furthermore, recent molecular analyses are providing direct evidence of the correlation of the proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad I, Larher F, Stewart GR (1979) Sorbitol, a compatible osmotic solute in Plantago maritima. New Phytol 82:671–678

    Article  CAS  Google Scholar 

  • Álvarez-Fernández A, Melgar JC, Abadía J, Abadía A (2011) Effects of moderate and severe iron deficiency chlorosis on fruit yield, appearance and composition in pear (Pyrus communis L.) and peach (Prunus persica (L.) Batsch). Environ Exp Bot 71:280–286

    Article  Google Scholar 

  • Archbold DD (1999) Carbohydrate availability modifies sorbitol dehydrogenase activity of apple fruit. Physiol Plant 105:391–395

    Article  CAS  Google Scholar 

  • Arndt SK, Wanek W, Clifford SC, Popp M (2000) Contrasting adaptations to drought stress in field-grown Ziziphus mauritiana and Prunus persica trees: water relations, osmotic adjustment and carbon isotope composition. Aust J Plant Physiol 27:985–996

    CAS  Google Scholar 

  • Bantog NA, Yamada K, Niwa N, Shiratake K, Yamaki S (2000) Gene expression of NAD+-dependent sorbitol dehydrogenase and NADP+-dependent sorbitol-6-phosphate dehydrogenase during development of loquat (Eriobotrya japonica Lindl.) fruit. J Jpn Soc Hortic Sci 69:231–236

    Article  CAS  Google Scholar 

  • Berüter J, Studer Feusi ME (1997) The effect of girdling on carbohydrate partitioning in the growing apple fruit. J Plant Physiol 151:277–285

    Article  Google Scholar 

  • Brown PH, Hu H (1996) Phloem mobility of boron is species dependent: evidence for phloem mobility in sorbitol-rich species. Ann Bot 77:497–505

    Article  CAS  Google Scholar 

  • Brown PH, Hu H (1998) Phloem boron mobility in diverse plant species. Bot Acta 111:331–335

    Article  CAS  Google Scholar 

  • Chen THH, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5:250–257

    Article  CAS  PubMed  Google Scholar 

  • Cheng L, Zhou R, Reidel EJ, Sharkey TD, Dandekar AM (2005) Antisense inhibition of sorbitol synthesis leads to up-regulation of starch synthesis without altering CO2 assimilation in apple leaves. Planta (Berl) 220:767–776

    Article  CAS  Google Scholar 

  • Dandekar AM, Arokiasamy S, Ibáñez AM, Phu ML, Reagan RL, Suzuki Y (2008) Reverse genomic analysis of ethylene and sorbitol regulation in apple fruit tissues. In: Abstracts of 19th New Phytologist Symposium, Timberline Lodge, Mount Hood, 17–20 September 2008

    Google Scholar 

  • Deguchi M, Saeki H, Ohkawa W, Kanahama K, Kanayama Y (2002a) Effects of low temperature on sorbitol biosynthesis in peach leaves. J Jpn Soc Hortic Sci 71:446–448 (in Japanese with English summary)

    Article  CAS  Google Scholar 

  • Deguchi M, Watanabe M, Kanayama Y (2002b) Increase in sorbitol biosynthesis in stressed Japanese pear leaves. Acta Hortic 587:511–518

    CAS  Google Scholar 

  • Deguchi M, Koshita Y, Gao M, Tao R, Tetsumura T, Yamaki S, Kanayama Y (2004) Engineered sorbitol accumulation induces dwarfism in Japanese persimmon. J Plant Physiol 161:1177–1184

    Article  CAS  PubMed  Google Scholar 

  • Escobar-Gutiérrez AJ, Gaudillèr JP (1997) Carbon partitioning in source leaves of peach, a sorbitol-synthesizing species, is modified by photosynthetic rate. Physiol Plant 100:353–360

    Article  Google Scholar 

  • Escobar-Gutierrez AJ, Zipperlin B, Carbonne F, Moing A, Gaudillere JP (1998) Photosynthesis, carbon partitioning and metabolite content during drought stress in peach seedlings. Aust J Plant Physiol 25:197–205

    Article  CAS  Google Scholar 

  • Fan RC, Peng CC, Xu YH, Wang XF, Li Y, Shang Y, Du SY, Zhao R, Zhang XY, Zhang LY, Zhang DP (2009) Apple sucrose transporter SUT1 and sorbitol transporter SOT6 interact with cytochrome b5 to regulate their affinity for substrate sugars. Plant Physiol 150:1880–1901

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gao M, Tao R, Miura K, Dandekar AM, Sugiura A (2001) Transformation of Japanese persimmon (Diospyros kaki Thunb.) with apple cDNA encoding NADP-dependent sorbitol-6-phosphate dehydrogenase. Plant Sci 160:837–845

    Article  CAS  PubMed  Google Scholar 

  • Gao Z, Maurousset L, Lemoine R, Yoo SD, van Nocker S, Loescher W (2003) Cloning, expression, and characterization of sorbitol transporters from developing sour cherry fruit and leaf sink tissues. Plant Physiol 131:1566–1575

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gao Z, Jayanty S, Beaudry R, Loescher W (2005) Sorbitol transporter expression in apple sink tissues: implications for fruit sugar accumulation and watercore development. J Am Soc Hortic Sci 130:261–268

    CAS  Google Scholar 

  • Gorham J, Hughes L, Wyn Jones RG (1981) Low-molecular-weight carbohydrates in some salt-stressed plants. Physiol Plant 53:27–33

    Article  CAS  Google Scholar 

  • Grant CR, ap Rees T (1981) Sorbitol metabolism by apple seedlings. Phytochemistry 20:1505–1511

    Article  CAS  Google Scholar 

  • Guo ZX, Pan TF, Li KT, Zhong FL, Lin L, Pan DM, Lu LX (2012) Cloning of NAD-SDH cDNA from plum fruit and its expression and characterization. Plant Physiol Biochem 57:175–180

    Article  CAS  PubMed  Google Scholar 

  • Hirai M (1981) Purification and characteristics of sorbitol-6-phosphate dehydrogenase from loquat leaves. Plant Physiol 67:221–224

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hirai M (1983) Seasonal changes in sorbitol-6-phosphate dehydrogenase in loquat leaf. Plant Cell Physiol 24:925–931

    CAS  Google Scholar 

  • Hu H, Penn SG, Lebrilla CB, Brown PH (1997) Isolation and characterization of soluble boron complexes in higher plants: the mechanism of phloem mobility of boron. Plant Physiol 113:649–655

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Iida M, Bantog NA, Yamada K, Shiratake K, Yamaki S (2004) Sorbitol- and other sugar-induced expressions of the NAD+-dependent sorbitol dehydrogenase gene in Japanese pear fruit. J Am Soc Hortic Sci 129:870–875

    CAS  Google Scholar 

  • International Peach Genome Initiative, Verde I, Abbott AG, Scalabrin S, Jung S, Shu S, Marroni F, Zhebentyayeva T, Dettori MT, Grimwood J, Cattonaro F, Zuccolo A, Rossini L, Jenkins J, Vendramin E, Meisel LA, Decroocq V, Sosinski B, Prochnik S, Mitros T, Policriti A, Cipriani G, Dondini L, Ficklin S, Goodstein DM, Xuan P, Del Fabbro C, Aramini V, Copetti D, Gonzalez S, Horner DS, Falchi R, Lucas S, Mica E, Maldonado J, Lazzari B, Bielenberg D, Pirona R, Miculan M, Barakat A, Testolin R, Stella A, Tartarini S, Tonutti P, Arús P, Orellana A, Wells C, Main D, Vizzotto G, Silva H, Salamini F, Schmutz J, Morgante M, Rokhsar DS (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45:487–94

    Article  CAS  PubMed  Google Scholar 

  • Kanamaru N, Ito Y, Komori S, Saito M, Kato H, Takahashi S, Omura M, Soejima J, Shiratake K, Yamada K, Yamaki S (2004) Transgenic apple transformed by sorbitol-6-phosphate dehydrogenase cDNA switch between sorbitol and sucrose supply due to its gene expression. Plant Sci 167:55–61

    Article  CAS  Google Scholar 

  • Kanayama Y, Yamaki S (1993) Purification and properties of NADP-dependent sorbitol-6-phosphate dehydrogenase from apple seedlings. Plant Cell Physiol 34:819–823

    CAS  Google Scholar 

  • Kanayama Y, Mori H, Imaseki H, Yamaki S (1992) Nucleotide sequence of a cDNA encoding NADP-sorbitol-6-phosphate dehydrogenase from apple. Plant Physiol 100:1607–1608

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kanayama Y, Watanabe M, Moriguchi R, Deguchi M, Kanahama K, Yamaki S (2006) Effects of low temperature and abscisic acid on the expression of the sorbitol-6-phosphate dehydrogenase gene in apple leaves. J Jpn Soc Hortic Sci 75:20–25

    Article  CAS  Google Scholar 

  • Koch KE (1996) Carbohydrate-modulated gene expression in plants. Annu Rev Plant Physiol Plant Mol Biol 47:509–540

    Article  CAS  PubMed  Google Scholar 

  • Lambers H, Blacquière T, Stuiver BEE (1981) Interactions between osmoregulation and the alternative respiratory pathway in Plantago coronopus as affected by salinity. Physiol Plant 51:63–68

    Article  CAS  Google Scholar 

  • Li TH, Li SH (2005) Leaf responses of micropropagated apple plants to water stress: nonstructural carbohydrate composition and regulatory role of metabolic enzymes. Tree Physiol 25:495–504

    Article  CAS  PubMed  Google Scholar 

  • Li TH, Li SH (2007) Enzymatic regulation of sorbitol metabolism in micropropagated apple plants in response to water stress. Eur J Hortic Sci 72:12–19

    CAS  Google Scholar 

  • Li F, Lei HJ, Zhao XJ, Shen XJ, Liu AL, Li TH (2012a) Isolation and characterization of two sorbitol transporter gene promoters in micropropagated apple plants (Malus × domestica) regulated by drought stress. Plant Growth Regul 68:475–482

    Article  CAS  Google Scholar 

  • Li F, Lei HJ, Zhao XJ, Tian RR, Li TH (2012b) Characterization of three sorbitol transporter genes in micropropagated apple plants grown under drought stress. Plant Mol Biol Rep 30:123–130

    Article  CAS  Google Scholar 

  • Li M, Feng F, Cheng L (2012c) Expression patterns of genes involved in sugar metabolism and accumulation during apple fruit development. PLoS One 7:e33055

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liang D, Cui M, Wu S, Ma FW (2012) Genomic structure, sub-cellular localization, and promoter analysis of the gene encoding sorbitol-6-phosphate dehydrogenase from apple. Plant Mol Biol Rep 30:904–914

    Article  CAS  Google Scholar 

  • Lo Bianco R, Rieger M (2002) Roles of sorbitol and sucrose in growth and respiration of ‘Encore’ peaches at the tree developmental stages. J Am Soc Hortic Sci 127:297–302

    CAS  Google Scholar 

  • Lo Bianco R, Rieger M, Sung SJS (2000) Effect of drought on sorbitol and sucrose metabolism in sinks and sources of peach. Physiol Plant 108:71–78

    Article  CAS  Google Scholar 

  • Loescher WH (1987) Physiology and metabolism of sugar alcohols in higher plants. Physiol Plant 70:553–557

    Article  CAS  Google Scholar 

  • Loescher WH, Everard JD (1996) Sugar alcohol metabolism in sinks and sources. In: Zamski E, Schaffer A (eds) Photoassimilate distribution in plants and crops: source–sink relationships. Dekker, New York, pp 185–207

    Google Scholar 

  • Loescher WH, Marlow GC, Kennedy RA (1982) Sorbitol metabolism and sink–source interconversions in developing apple leaves. Plant Physiol 70:335–339

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martinelli F, Teo G, Uratsu SL, Podishetty NK, Dandekar AM (2011) Effects of the silencing of sorbitol dehydrogenase on sugar partitioning in vegetative sinks in apple. Eur J Hortic Sci 76:56–62

    CAS  Google Scholar 

  • Moing A, Carbonne F, Zipperlin F, Svanella L, Gaudillere JP (1997) Phloem loading in peach: symplastic or apoplastic? Physiol Plant 101:489–496

    Article  CAS  Google Scholar 

  • Morandi B, Corelli Grappadelli L, Rieger M, Lo Bianco R (2008) Carbohydrate availability affects growth and metabolism in peach fruit. Physiol Plant 133:229–241

    Article  CAS  PubMed  Google Scholar 

  • Nosarzewski M, Archbold DD (2007) Tissue-specific expression of SORBITOL DEHYDROGENASE in apple fruit during early development. J Exp Bot 58:1863–1872

    Article  CAS  PubMed  Google Scholar 

  • Nosarzewski M, Clements AM, Downie AB, Archbold DD (2004) Sorbitol dehydrogenase expression and activity during apple fruit set and early development. Physiol Plant 121:391–398

    Article  Google Scholar 

  • Oura Y, Yamada K, Shiratake K, Yamaki S (2000) Purification and characterization of a NAD+-dependent sorbitol dehydrogenase from Japanese pear fruit. Phytochemistry 54:567–572

    Article  CAS  PubMed  Google Scholar 

  • Palonen P, Buszard D (1997) Current state of cold hardiness research on fruit crops. Can J Plant Sci 77:399–420

    Article  Google Scholar 

  • Pan Q, Wang Z, Quebedeaux B (1998) Responses of the apple plant to CO2 enrichment: changes in photosynthesis, sorbitol, other soluble sugars, and starch. Aust J Plant Physiol 25:293–297

    Article  CAS  Google Scholar 

  • Park SW, Song KJ, Kim MY, Hwang JH, Shin YU, Kim WC, Chung WI (2002) Molecular cloning and characterization of four cDNAs encoding the isoforms of NAD-dependent sorbitol dehydrogenase from the Fuji apple. Plant Sci 162:513–519

    Article  CAS  Google Scholar 

  • Raese JT, Williams MW, Billingsley HD (1978) Cold hardiness, sorbitol, and sugar levels of apple shoots as influenced by controlled temperature and season. J Am Soc Hortic Sci 103:796–801

    CAS  Google Scholar 

  • Ranney TG, Bassuk NL, Whitlow TH (1991) Osmotic adjustment and solute constituents in leaves and roots of water-stressed cherry trees. J Am Soc Hortic Sci 116:684–688

    CAS  Google Scholar 

  • Reidel EJ, Rennie EA, Amiard V, Cheng L, Turgeon R (2009) Phloem loading strategies in three plant species that transport sugar alcohols. Plant Physiol 149:1601–1608

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rennie EA, Turgeon R (2009) A comprehensive picture of phloem loading strategies. Proc Natl Acad Sci USA 106:14162–14167

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709

    Article  CAS  PubMed  Google Scholar 

  • Sakanishi K, Kanayama Y, Mori H, Yamada K, Yamaki S (1998) Expression of the gene for NADP-dependent sorbtiol-6-phosphate dehydrogenase in peach leaves of various developmental stages. Plant Cell Physiol 39:1372–1374

    Article  CAS  Google Scholar 

  • Sheveleva EV, Marquez S, Chmara W, Zegeer A, Jensen RG, Bohnert HJ (1998) Sorbitol-6-phosphate dehydrogenase expression in transgenic tobacco: high amounts of sorbitol lead to necrotic lesions. Plant Physiol 117:831–839

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smeekens S (2000) Sugar-induced signal transduction in plants. Annu Rev Plant Physiol Plant Mol Biol 51:49–81

    Article  CAS  PubMed  Google Scholar 

  • Suzue Y, Tsukuda M, Hatano S, Kanayama Y, Yamada K, Shiratake K, Yamaki S (2006) Changes in the activity and gene expression of sorbitol- and sucrose-related enzymes with leaf development of ‘La France’ pear. J Jpn Soc Hortic Sci 75:45–50

    Article  CAS  Google Scholar 

  • Suzuki Y, Dandekar AM (2014a) Sucrose induces expression of the sorbitol-6-phosphate dehydrogenase gene in source leaves of loquat. Physiol Plant 150:355–362

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y, Dandekar AM (2014b) Transcriptomic analysis of leaves of transgenic apple silenced for sorbitol-6-phosphate dehydrogenase gene. Acta Hortic (in press)

    Google Scholar 

  • Tao R, Uratsu SL, Dandekar AM (1995) Sorbitol synthesis in transgenic tobacco with apple cDNA encoding NADP-dependent sorbitol-6-phosphate dehydrogenase. Plant Cell Physiol 36:525–532

    CAS  PubMed  Google Scholar 

  • Teo G, Suzuki Y, Uratsu SL, Lampinen B, Ormonde N, Hu WK, DeJong TM, Dandekar AM (2006) Silencing leaf sorbitol synthesis alters long-distance partitioning and apple fruit quality. Proc Natl Acad Sci USA 103:18842–18847

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal Ri A, Goremykin V, Komjanc M, Longhi S, Magnago P, Malacarne G, Malnoy M, Micheletti D, Moretto M, Perazzolli M, Si-Ammour A, Vezzulli S, Zini E, Eldredge G, Fitzgerald LM, Gutin N, Lanchbury J, Macalma T, Mitchell JT, Reid J, Wardell B, Kodira C, Chen Z, Desany B, Niazi F, Palmer M, Koepke T, Jiwan D, Schaeffer S, Krishnan V, Wu C, Chu VT, King ST, Vick J, Tao Q, Mraz A, Stormo A, Stormo K, Bogden R, Ederle D, Stella A, Vecchietti A, Kater MM, Masiero S, Lasserre P, Lespinasse Y, Allan AC, Bus V, Chagné D, Crowhurst RN, Gleave AP, Lavezzo E, Fawcett JA, Proost S, Rouzé P, Sterck L, Toppo S, Lazzari B, Hellens RP, Durel CE, Gutin A, Bumgarner RE, Gardiner SE, Skolnick M, Egholm M, Van de Peer Y, Salamini F, Viola R (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Stutte GW (1992) The role of carbohydrates in active osmotic adjustment in apple under water stress. J Am Soc Hortic Sci 117:816–823

    CAS  Google Scholar 

  • Wang Z, Quebedeaux B, Stutte GW (1995) Osmotic adjustment: effect of water stress on carbohydrates in leaves, stems and roots of apple. Aust J Plant Physiol 22:747–754

    Article  CAS  Google Scholar 

  • Wang Z, Quebedeaux B, Stutte GW (1996) Partitioning of [14C]-glucose into sorbitol and other carbohydrates in apple under water stress. Aust J Plant Physiol 23:245–251

    Article  CAS  Google Scholar 

  • Wang Z, Yuan Z, Quebedeaux B (1997) Photoperiod alters diurnal carbon partitioning into sorbitol and other carbohydrates in apple. Aust J Plant Physiol 24:587–597

    Article  CAS  Google Scholar 

  • Wang Z, Yuan Z, Quebedeaux B (1998) Photoperiod alters partitioning of newly-fixed 14C and reserve carbon into sorbitol, sucrose and starch in apple leaves, stems, and roots. Aust J Plant Physiol 25:503–506

    Article  CAS  Google Scholar 

  • Wang Z, Pan Q, Quebedeaux B (1999) Carbon partitioning into sorbitol, sucrose, and starch in source and sink apple leaves as affected by elevated CO2. Environ Exp Bot 41:39–46

    Article  CAS  Google Scholar 

  • Wang XL, Xu YH, Peng CC, Fan RC, Gao XQ (2009) Ubiquitous distribution and different subcellular localization of sorbitol dehydrogenase in fruit and leaf of apple. J Exp Bot 60:1025–1034

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Watari J, Kobae Y, Yamaki S, Yamada K, Toyofuku K, Tabuchi T, Shiratake K (2004) Identification of sorbitol transporters expressed in the phloem of apple source leaves. Plant Cell Physiol 45:1032–1041

    Article  CAS  PubMed  Google Scholar 

  • Williams MW, Raese JT (1974) Sorbitol in tracheal sap of apple as related to temperature. Physiol Plant 30:49–52

    Article  CAS  Google Scholar 

  • Yamada K, Oura Y, Mori H, Yamaki S (1998) Cloning of NAD-dependent sorbitol dehydrogenase from apple fruit and gene expression. Plant Cell Physiol 39:1375–1379

    Article  CAS  PubMed  Google Scholar 

  • Yamada K, Niwa N, Shiratake K, Yamaki S (2001) cDNA cloning of NAD-dependent sorbitol dehydrogenase from peach fruit and its expression during fruit development. J Hortic Sci Biotechnol 76:581–587

    CAS  Google Scholar 

  • Yamada K, Suzue Y, Hatano S, Tsukuda M, Kanayama Y, Shiratake K, Yamaki S (2006) Changes in the activity and gene expression of sorbitol- and sucrose-related enzymes associated with development of ‘La France’ pear fruit. J Jpn Soc Hortic Sci 75:38–44

    Article  CAS  Google Scholar 

  • Yamaki S (1981) Subcellular localization of sorbitol-6-phosphate dehydrogenase in protoplast from apple cotyledons. Plant Cell Physiol 22:359–367

    CAS  Google Scholar 

  • Yamaki S, Ishikawa K (1986) Role of four sorbitol-related enzymes and invertase in the seasonal alteration of sugar metabolism in apple tissue. J Am Soc Hortic Sci 111:134–137

    CAS  Google Scholar 

  • Yamaki S, Moriguchi T (1989) Seasonal fluctuation of sorbitol related enzymes and invertase activities accompanying maturation of Japanese pear (Pyrus serotina Rehder var. culta Rehder) fruit. J Jpn Soc Hortic Sci 57:602–607

    Article  CAS  Google Scholar 

  • Zhang LY, Peng YB, Pelleschi-Travier S, Fan Y, Lu YF, Lu YM, Gao XP, Shen YY, Delrot S, Zhang DP (2004) Evidence for apoplasmic phloem unloading in developing apple fruit. Plant Physiol 135:574–586

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang JY, Tian RR, Dong JL, Zhao K, Li TH, Wang T (2011) Response and regulation of the S6PDH gene in apple leaves under osmotic stress. J Hortic Sci Biotechnol 86:563–568

    CAS  Google Scholar 

  • Zhou R, Quebedeaux B (2003) Changes in photosynthesis and carbohydrate metabolism in mature apple leaves in response to whole plant source–sink manipulation. J Am Soc Hortic Sci 128:113–119

    CAS  Google Scholar 

  • Zhou R, Sicher R, Quebedeaux B (2001) Diurnal changes in carbohydrate metabolism in mature apple leaves. Aust J Plant Physiol 28:1143–1150

    CAS  Google Scholar 

  • Zhou R, Cheng LL, Wayne R (2003) Purification and characterization of sorbitol-6-phosphate phosphatase from apple leaves. Plant Sci 165:227–232

    Article  CAS  Google Scholar 

  • Zhou R, Cheng L, Dandekar AM (2006) Down-regulation of sorbitol dehydrogenase and up-regulation of sucrose synthase in shoot tips of the transgenic apple trees with decreased sorbitol synthesis. J Exp Bot 57:3647–3657

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann MH, Ziegler H (1975) List of sugars and sugar alcohols in sieve-tube exudates. In: Zimmermann MH, Milburn JA (eds) Transport in plants. I. Phloem transport. Springer-Verlag, Berlin, pp 480–503

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuo Suzuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Suzuki, Y. (2015). Polyol Metabolism and Stress Tolerance in Horticultural Plants. In: Kanayama, Y., Kochetov, A. (eds) Abiotic Stress Biology in Horticultural Plants. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55251-2_5

Download citation

Publish with us

Policies and ethics