Skip to main content

Watercore in Fruits

  • Chapter
  • First Online:

Abstract

Watercore is a physiological internal disorder affecting apples and pears, in which the intercellular air spaces of the flesh become filled with liquid, resulting in tissues with translucent appearance. Watercore is associated with fruit maturity as well as the presentation of varietal differences in susceptibility in apples and pears. Susceptibility is thus considered a heritable character. Watercore is promoted by low or high air temperatures during the preharvest period, large fruit, poor calcium concentration, high nitrogen and boron nutrition, a high leaf-to-fruit ratio, excessive fruit thinning, high or low light exposure, growth in volcanic ash soil, ethrel (ethephon) and gibberellin treatment, and girdling of the trunk and limbs. Mild watercore symptoms can disappear in storage, but when severe, internal browning and large cavities can develop. The fleshy tissue of apples with watercore has a higher sorbitol and sucrose concentration and lower glucose concentration than tissue without watercore. Watercore is also accompanied by changes in membrane permeability during maturation and ripening. A decrease in the expression of sorbitol transporter, leading to sorbitol accumulation in the intercellular spaces and subsequent flooding of tissues, has also been suggested.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abe K, Sato Y, Saito T, Kurihara A, Kotobuki K (1995) Narrow-sense heritability of fruit characters in Japanese pear (Pyrus pyrifolia Nakai). Breed Sci 45:1–5

    Google Scholar 

  • Amezquita R, Dewey DH (1971) Fruit internal breakdown relative to sorbitol content in ‘Jonathan’ apples. HortScience 6:280

    Google Scholar 

  • Aomori Apple Experiment Station (1953) Results of the apple breeding work. Bull Apple Exp Sta 4:103

    Google Scholar 

  • Atkinson JD (1971) Diseases of tree fruits in New Zealand. NZ Dept Sci Ind Res Inf Ser 81:170–173

    Google Scholar 

  • Ballard WS, Magness JR, Hawkins LA (1922) Internal browning of the ‘Yellow Newton’ apple. US Dept Agric Bull 1104

    Google Scholar 

  • Bangerth F (1973) Investigations upon Ca-related physiological disorders. Phytopathol Z 77:20–37

    Article  Google Scholar 

  • Baranowski P, Lipecki J, Mazurek W, Walczak RT (2008) Detection of watercore in ‘Gloster’ apples using thermography. Postharvest Biol Technol 47:358–366

    Article  Google Scholar 

  • Bartram R (1969) Use of Alar on ‘Red Delicious’ in 1968. Goodfruit Grower 19:11–13

    Google Scholar 

  • Bieleski RL (1977) Accumulation of sorbitol and glucose by leaf slices of Rosaceae. Aust J Plant Physiol 4:11–24

    Article  CAS  Google Scholar 

  • Bir RE, Bramlage WJ (1972) Responses of ‘Richared Delicious’ apple fruit to freezing temperature. II. Whole fruit tests. HortScience 7:324

    Google Scholar 

  • Bowen JH, Watkins CB (1997) Fruit maturity, carbohydrate and mineral content relationships with watercore in ‘Fuji’ apples. Postharvest Biol Technol 11:31–38

    Article  CAS  Google Scholar 

  • Bramlage WJ, Thompson AH (1962) The effects of early-season sprays of boron on fruit set, color, finish, and storage life of apples. Proc Am Soc Hortic Sci 80:64–72

    CAS  Google Scholar 

  • Brown PH, Hu H (1996) Phloem mobility of boron is species dependent: evidence for phloem mobility in sorbitol-rich species. Ann Bot 77:497–505

    Article  CAS  Google Scholar 

  • Burg SP, Burg EA, Marks R (1964) Relationship of soluble leakage to tonicity in fruits and other plant tissues. Plant Physiol 39:185–191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carne WM, Martin D (1934) Apple investigations in Tasmania: miscellaneous notes. J Council Sci Ind Res 7:207–214

    Google Scholar 

  • Cavallieri R (1997) Detection of watercore in apples. Washington State Univ Tree Fruit Postharvest J 8:3–8

    Google Scholar 

  • Chagné D, Crowhurst RN, Pindo M, Thrimawithana A, Deng C, Ireland H, Fiers M, Dzierzon H, Cestaro A, Fontana P, Bianco L, Lu A, Storey R, Knäbel M, Saeed M, Montanari S, Kim YK, Nicolini D, Larger S, Stefani E, Allan AC, Bowen J, Harvey I, Johnston J, Malnoy M, Troggio M, Perchepied L, Sawyer G, Wiedow C, Won K, Viola R, Hellens RP, Brewer L, Bus VGM, Schaffer RJ, Gardiner SE, Velasco R (2014) The draft genome sequence of European pear (Pyrus communis L. ‘Bartlett’). PLoS One 9:e92644y

    Google Scholar 

  • Cho BK, Chayaprasert W, Stroshine RL (2008) Effects of internal browning and watercore on low field (5.4 MHz) proton magnetic resonance measurements of T2 values of whole apples. Postharvest Biol Technol 47:81–89

    Article  CAS  Google Scholar 

  • Chun JP, Tamura F, Tanabe K, Itai A (2003a) Physiological and chemical changes associated with watercore development induced by GA in Japanese pear ‘Akibae’ and ‘Housui’. J Jpn Soc Hortic Sci 72:378–384

    Article  CAS  Google Scholar 

  • Chun JP, Tamura F, Tanabe K, Itai A, Tabuchi T (2003b) Cell wall degradation and structural changes of GA-induced watercored tissues in Japanese pear ‘Akibae’ and ‘Hosui’. J Jpn Soc Hortic Sci 72:488–496

    Article  CAS  Google Scholar 

  • Clark CJ, MacFall JS, Bieleski RL (1998) Loss of watercore from ‘Fuji’ apple observed by magnetic resonance imaging. Sci Hortic 73:213–227

    Article  Google Scholar 

  • Couey HM, Wiliams MW (1973) Preharvest application of ethephon on scald and quality of stored ‘Delicious’ apples. HortScience 8:56–57

    Google Scholar 

  • Drazeta L, Lang A, Hall AJ, Volz RK, Jameson PE (2004) Air volume measurement of ‘Braeburn’ apple fuit. J Exp Bot 55:1061–1069

    Article  CAS  PubMed  Google Scholar 

  • Ferguson IB, Watkins CB (1989) Bitter pit in apple fruit. Hortic Rev 11:289–355

    CAS  Google Scholar 

  • Filder JC, Wilkinson BG, Edney KL, Sharples RO (1973) The biology of apple and pear storage. Research review no. 3. Commonwealth Bureau of Horticulture and Plantation Crops. Commonwealth Agricultural Bureau, East Malling, England

    Google Scholar 

  • Fukuda H (1977) Effect of calcium on the incidence of internal breakdown of ‘Delicious’. Bull Fruit Tree Res Sta (Morioka) Series C 4:13–23

    Google Scholar 

  • Gao Z, Jayanty S, Beaudry R, Loesher W (2005) Sorbitol transporter expression in apple sink tissues: implications for sugar accumulation and watercore development. J Am Soc Hortic Sci 130:261–268

    CAS  Google Scholar 

  • Gemma H, Oomori S, Sugaya S, Peng SA, Iwahori S (2002) Study on watercore occurrence in ‘Hosui’ Japanese pear. Acta Hortic 596:845–850

    Google Scholar 

  • Greene DW, Lord WJ, Bramlage WJ (1977) Mid-summer application of ethephon and daminozide on apples. II. Effect on ‘Delicious.’ J Am Soc Hortic Sci 102:494–497

    Google Scholar 

  • Harker FR, Watkins CB, Brookfield PL, Miller MJ, Reid S, Jackson PJ, Bieleski RL, Bartley T (1999) Maturity and regional influences on watercore development and its postharvest disappearance in Fuji apples. J Am Soc Hortic Sci 124:166–172

    Google Scholar 

  • Harley CP (1938) Some associated factors in the development of watercore. Proc Am Soc Hortic Sci 36:435–438

    Google Scholar 

  • Hayama H, Iwatani A, Nishimoto T, Oya Y, Nakamura Y (2014) Watercore disorder in Japanese pear ‘Niitaka’ is increased by high fruit temperatures during fruit maturation. Sci Hortic 175:27–32

    Article  Google Scholar 

  • Hu H, Brown PH (1994) Localization of boron in cell wall of squash and tobacco and its association with pectin. Plant Physiol 105:681–689

    CAS  PubMed Central  PubMed  Google Scholar 

  • Iida M, Bantog NA, Yamada K, Shiratake K, Yamaki S (2004) Sorbitol- and other sugar-induced expressions of the NAD+-dependent sorbitol dehydrogenase gene in Japanese pear fruit. J Am Soc Hortic Sci 129:870–875

    CAS  Google Scholar 

  • Inomata Y, Murase S, Nagara M, Shinokawa T, Oikawa S, Suzuki K (1993a) Studies on factors which reduce watercore in Japanese pear (Pyrus pyrifolia Nakai cv. Hosui). J Jpn Soc Hortic Sci 62:257–266

    Article  CAS  Google Scholar 

  • Inomata Y, Murase S, Nagara M, Shinokawa T, Suzuki K (1993b) Relationship between watercore and membrane permeability in the Japanese pear (Pyrus pyrifolia Nakai cv. Hosui). J Jpn Soc Hortic Sci 62:267–275

    Article  CAS  Google Scholar 

  • Inomata Y, Oikawa S, Yaegaki H, Suzuki K (1996) Effect of gibberellins and their synthesis inhibitors on the occurrence of watercore in ‘Hosui’ Japanese pear. Bull Fruit Tree Res Sta 29:51–65

    CAS  Google Scholar 

  • Inomata Y, Yaegaki H, Suzuki K (1999) The effects of polyethylene bagging, calcium carbonate treatment and difference in fruit–air temperatures on the occurrence of watercore in Japanese pear ‘Housui’. J Jpn Soc Hortic Sci 68:336–342

    Article  CAS  Google Scholar 

  • Jackson JE (2003) Biology of apples and pears. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kajiura I (1994) Nashi (Japanese pear). In: Konishi K, Iwahori S, Kitagawa H, Yukawa T (eds) Horticulture in Japan. Asakura, Tokyo, pp 40–47

    Google Scholar 

  • Kajiura I, Sato Y (1990) Recent progress in Japanese pear (Pyrus pyrifolia Nakai) breeding and descriptions of cultivars based on literature review. Bull Fruit Tree Res Sta Extr 1:1–329

    Google Scholar 

  • Kajiura I, Yamaki S, Omura M, Shimura I (1976) Watercore in Japanese pear (Pyrus serotina Rehder var. ‘Culta’ Rehder). I. Description of the disorder and its relation to fruit maturity. Sci Hortic 4:261–270

    Article  Google Scholar 

  • Kanayama Y (2009) Physiological roles of polyols in horticultural crops. J Jpn Soc Hortic Sci 78:158–168

    Article  CAS  Google Scholar 

  • Kanayama Y, Mori H, Imaseki H, Yamaki S (1992) Nucleotide sequence of a cDNA encoding NADP-sorbitol-6-phosphate dehydrogenase from apple. Plant Physiol 100:1607–1608

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim S, Schatzki TF (2000) Apple watercore sorting system using X-ray imagery. I. Algorithm development. Trans ASAE 43:1695–1702

    Article  Google Scholar 

  • Kollas DA (1968) Physiology of watercore development in apple. Ph.D. Thesis, Cornell University, Ithaca, NY

    Google Scholar 

  • Lakso AN (1994) Apple. In: Schaffer BS, Andersen PC (eds) Handbook of environmental physiology of fruit crops, vol 1. CRC, Boca Raton, pp 3–42

    Google Scholar 

  • Loescher WH (1987) Physiology and metabolism of sugar alcohols in higher plants. Physiol Plant 70:553–557

    Article  CAS  Google Scholar 

  • Marlow GC, Loescher W (1984) Watercore. Hortic Rev 6:189–251

    CAS  Google Scholar 

  • Marlow GC, Loescher W (1985) Sorbitol metabolism, the climacteric, and watercore in apples. J Am Soc Hortic Sci 110:676–680

    CAS  Google Scholar 

  • Moriguchi T, Abe K, Sanada T, Yamaki S (1992) Levels and role of sucrose synthase, sucrose-phosphate synthase, and acid invertase in sucrose accumulation in fruit of Asian pear. J Am Soc Hortic Sci 117:274–278

    CAS  Google Scholar 

  • O’Loughlin JB, Matthews CD (1968) Maturity studies of ‘Delicious’ apples 165/1967. Tasmanian J Agric 39:109–112

    Google Scholar 

  • Palmer RC (1931) Recent progress in the study of Jonathan breakdown in Canada. Sci Hortic 11:243–258

    Google Scholar 

  • Perring MA (1968) Mineral composition of apples. VIII. Further investigations into the relationship between composition and disorders of the fruits. J Sci Food Agric 19:640–645

    Article  CAS  Google Scholar 

  • Perring MA (1971) Watercore in apples. Annu Rep East Malling Res Sta 1973:161–162

    Google Scholar 

  • Perring MA, Pearson K (1979) Mineral composition and the occurrence of disorders. Annu Rep East Malling Res Sta 1978:149

    Google Scholar 

  • Perring MA, Majoyeogbe RA, Pearson K (1974) Watercore in relation to fruit composition. Annu Rep East Malling Res Sta 1973:149

    Google Scholar 

  • Sakuma F, Umeya T, Tahira K, Katagiri S, Hiyama H (1995) Effects of high temperature and/or gibberellins treatments during early fruit development on the occurrence of watercore in Japanese pear (Pyrus pyrifolia Nakai cv. Hosui). J Jpn Soc Hortic Sci 64:243–249

    Article  CAS  Google Scholar 

  • Sakuma F, Katagiri S, Tahira K, Umeya T, Hiyama H (2000) Effects of high temperature and/or controlling transpiration by bagging and/or spraying an anti-transpirant on the occurrence of watercore in Japanese pear ‘Housui’ (Pyrus pyrifolia Nakai). J Jpn Soc Hortic Sci 69:283–289

    Article  CAS  Google Scholar 

  • Schatzki TF, Haff RP, Young R, Can I, Le LC, Toyofuku N (1997) Defect detection in apples by means of X-ray imaging. Trans ASAE 40:1407–1415

    Article  Google Scholar 

  • Sharples RO (1967) A note on the occurrence of watercore breakdown apples during 1966. Plant Pathol 16:11–120

    Article  Google Scholar 

  • Siddiqui S, Bangerth F (1993) Studies on cell wall-mediated changes during storage calcium-infiltrated apples. Acta Hortic 326:105–113

    Google Scholar 

  • Smith AJM (1937) Anatomy of the apple-fruit. Rep Food Invest Board Dept Sci Indus Res Great Britain 127–133

    Google Scholar 

  • Tamura F, Chun JP, Tanabe K, Morimoto M, Itai A (2003) Effect of summer-pruning and gibberellin on the watercore development in Japanese pear ‘Akibae’ fruit. J Jpn Soc Hortic Sci 75:372–377

    Article  Google Scholar 

  • Tanaka K, Inomata Y, Kawase S, Sekimoto Y, Nagamura K, Kawakami C (1992) The physiological mechanism of watercore in Japanese pear (Pyrus pyrifolia Nakai var. culta Nakai) and its prevention by calcium EDTA. J Jpn Soc Hortic Sci 61:183–190

    Google Scholar 

  • Tanase K, Yamaki S (2000) Sucrose synthase isozymes related to sucrose accumulation during fruit development of Japanese pear (Pyrus pyrifolia Nakai). J Jpn Soc Hortic Sci 69:671–676

    Article  CAS  Google Scholar 

  • Terakami S, Kimura T, Nishitani C, Sawamura Y, Saito T, Hirabayashi T, Yamamoto T (2009) Genetic linkage map of the Japanese pear ‘Housui’ identifying three homozygous genomic regions. J Jpn Soc Hortic Sci 78:417–424

    Article  CAS  Google Scholar 

  • Throop JA, Aneshansley DJ, Upchurch BL (1994) Camera system effects on detecting watercore in ‘Red Delicious’ apples. Trans ASAE 37:873–877

    Article  Google Scholar 

  • Tomana T, Yamada H (1988) Relationship between temperature and fruit quality of apple cultivars grown at different locations. J Jpn Soc Hortic Sci 56:391–397

    Article  Google Scholar 

  • Tong YA, Zhou HJ, Yang RL, Zhang GF (1980) Inorganic constituents and nitrogen content of Delicious apples in relation to the occurrence of water core on calcareous soils. Sci Agric Sin 2:67–71

    Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal Ri A, Goremykin V, Komjanc M, Longhi S, Magnago P, Malacarne G, Malnoy M, Micheletti D, Moretto M, Perazzolli M, Si-Ammour A, Vezzulli S, Zini E, Eldredge G, Fitzgerald LM, Gutin N, Lanchbury J, Macalma T, Mitchell JT, Reid J, Wardell B, Kodira C, Chen Z, Desany B, Niazi F, Palmer M, Koepke T, Jiwan D, Schaeffer S, Krishnan V, Wu C, Chu VT, King ST, Vick J, Tao Q, Mraz A, Stormo A, Stormo K, Bogden R, Ederle D, Stella A, Vecchietti A, Kater MM, Masiero S, Lasserre P, Lespinasse Y, Allan AC, Bus V, Chagné D, Crowhurst RN, Gleave AP, Lavezzo E, Fawcett JA, Proost S, Rouzé P, Sterck L, Toppo S, Lazzari B, Hellens RP, Durel CE, Gutin A, Bumgarner RE, Gardiner SE, Skolnick M, Egholm M, Van de Peer Y, Salamini F, Viola R (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839

    Article  CAS  PubMed  Google Scholar 

  • Wade NL, Campbell LC, Bishop DG (1980) Tissue permeability and membrane composition of ripening banana fruits. J Exp Bot 31:975–982

    Article  CAS  Google Scholar 

  • Wang SY, Faust M (1992a) Ethylene biosynthesis and polyamine accumulation in apples with watercore. J Am Soc Hortic Sci 117:133–138

    CAS  Google Scholar 

  • Wang SY, Faust M (1992b) Variation in lipid composition of apples in relation to watercore. J Am Soc Hortic Sci 117:829–833

    CAS  Google Scholar 

  • Wang SY, Wang PC, Faust M (1988) Non-destructive detection of watercore in apple with nuclear magnetic resonance imaging. HortScience 24:106–109

    Google Scholar 

  • Westwood MN, Batjer LP, Billingsley HD (1967) Cell size, cell number and fruit density of apples as related to fruit size, position in the cluster and thinning method. Proc Am Soc Hortic Sci 91:51–62

    Google Scholar 

  • Williams MW (1966) Relationship of sugars and sorbitol to watercore in apples. Proc Am Soc Hortic Sci 88:67–75

    CAS  Google Scholar 

  • Williams MW (1969) The use of Alar on apples. Proc Wash State Hortic Assoc 1968:21–25

    Google Scholar 

  • Williams MW, Billingsley HD (1973) Watercore development in apple fruits as related to sorbitol levels in the tree sap and to minimum temperatures. J Am Soc Hortic Sci 98:205–207

    Google Scholar 

  • Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S, Khan MA, Tao S, Korban SS, Wang H, Chen NJ, Nishio T, Xu X, Cong L, Qi K, Huang X, Wang Y, Zhao X, Wu J, Deng C, Gou C, Zhou W, Yin H, Qin G, Sha Y, Tao Y, Chen H, Yang Y, Song Y, Zhan D, Wang J, Li L, Dai M, Gu C, Wang Y, Shi D, Wang X, Zhang H, Zeng L, Zheng D, Wang C, Chen M, Wang G, Xie L, Sovero V, Sha S, Huang W, Zhang S, Zhang M, Sun J, Xu L, Li Y, Liu X, Li Q, Shen J, Wang J, Paull RE, Bennetzen JL, Wang J, Zhang S (2013) The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res 23:396–408

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wunsche JN, Ferguson IB (2005) Crop load interactions in apple. Hortic Rev 31:231–290

    CAS  Google Scholar 

  • Yamada H, Ohmura H, Arai C, Terui M (1994) Effect of preharvest fruit temperature on ripening, sugars, and watercore occurrence in apples. J Am Soc Hortic Sci 119:1208–1214

    CAS  Google Scholar 

  • Yamada H, Takeuchi K, Hoshi A, Amano S (2004) Comparison of water relations in watercored and non-watercored apples induced by fruit temperature treatment. Sci Hortic 99:309–318

    Article  Google Scholar 

  • Yamada H, Kamio M, Amano S (2005) Varietal differences in susceptibility to early or high temperature-induced watercore in apples. J Jpn Soc Hortic Sci 74:115–120

    Article  CAS  Google Scholar 

  • Yamada H, Kaga Y, Amano S (2006) Cellular compartmentation and membrane permeability to sugars in relation to early or high temperature-induced watercore in apples. Sci Hortic 108:29–34

    Article  CAS  Google Scholar 

  • Yamaki S, Ino M (1992) Alteration of cellular compartmentation and membrane permeability to sugars in immature and mature apple fruit. J Am Soc Hortic Sci 117:951–954

    CAS  Google Scholar 

  • Yamaki S, Kajiura I (1983) Changes in the polysaccharides of cell wall, their constituent monosaccharides and some cell wall-degrading enzyme activities in the watercore fruit of Japanese pear (Pyrus serotina Rehder var. culta Rehder). J Jpn Soc Hortic Sci 52:250–255

    Article  CAS  Google Scholar 

  • Yamaki S, Moriguchi T (1989) Seasonal fluctuation of sorbitol related enzymes and invertase activities accompanying maturation of Japanese pear (Pyrus serotina Rehder var. culta Rehder) fruit. J Jpn Soc Hortic Sci 57:602–607

    Article  CAS  Google Scholar 

  • Yamaki S, Kajiura I, Omura M, Matsuda K (1976) Watercore in Japanese pear (Pyrus serotina Rehder var. culta Rehder). II. Chemical changes in watercored tissue. Sci Hortic 4:271–277

    Article  CAS  Google Scholar 

  • Zhang LY, Peng YB, Pelleschi-Travier S, Fan Y, Lu YF, Lu YM, Gao XP, Shen YY, Delrot S, Zhang DP (2004) Evidence of apoplasmic phloem unloading in developing apple fruit. Plant Physiol 135:574–586

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang C, Tanabe K, Lee U, Kang S, Tokunaga T (2009) Gibberellins and N-(2-chloro-4-pyridyl)-N′-phenylurea improve retention force and reduce water core in premature fruit of Japanese pear cv. Hosui. Plant Growth Regul 58:25–34

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiro Itai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Itai, A. (2015). Watercore in Fruits. In: Kanayama, Y., Kochetov, A. (eds) Abiotic Stress Biology in Horticultural Plants. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55251-2_10

Download citation

Publish with us

Policies and ethics