Skip to main content

Stress Tolerance of Baker’s Yeast During Bread-Making Processes

  • Chapter
  • First Online:
Book cover Stress Biology of Yeasts and Fungi

Abstract

During the fermentation of dough and the production of baker’s yeast, cells of baker’s yeast are exposed to numerous and multiple environmental stresses including freeze–thaw, high-sucrose, and air-drying, the so-called baking-associated stresses. In addition, such stress conditions could induce oxidative stress in yeast cells with an increase in reactive oxygen species level because of the denaturation of proteins including antioxidant enzymes and the severe damage to the mitochondrial membrane or respiratory chain. To avoid lethal damage, baker’s yeast cells need to acquire a variety of stress-tolerant mechanisms, such as the induction of stress proteins, accumulation of stress protectants or compatible solutes, change of membrane composition, and repression of translation, by regulating the corresponding gene expression via stress-triggered signal transduction pathways. For example, proline and trehalose are important compounds involved in the stress tolerance of baker’s yeast. In fact, the engineering of proline and trehalose metabolism is a promising approach for the development of stress-tolerant baker’s yeast. Moreover, the multiomics approach such as comprehensive phenomics and functional genomics is promising for the identification of novel genes required for the stress tolerance. To further improve the fermentation ability or the production efficiency of yeasts, however, the detailed mechanisms underlying the stress response, adaptation, and tolerance of yeast cells should be understood. We believe that not only baker’s yeast, but also other important industrial yeasts with higher tolerance to various stresses, could contribute to the yeast-based industry for the effective production of bread doughs and alcoholic beverages or a breakthrough in bioethanol production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almeida B, Buttner S, Ohlmeier S, Silva A, Mesquita A, Sampaio-Marques B, Osorio NS, Kollau A, Mayer B, Leao C, Laranjinha J, Rodrigues F, Madeo F, Ludovico P (2007) NO-mediated apoptosis in yeast. J Cell Sci 120:3279–3288

    Article  CAS  PubMed  Google Scholar 

  • Ando A, Tanaka F, Murata Y, Takagi H, Shima J (2006) Identification and classification of genes required for tolerance to high-sucrose stress revealed by genome-wide screening of Saccharomyces cerevisiae. FEMS Yeast Res 6:249–267

    Article  CAS  PubMed  Google Scholar 

  • Ando A, Nakamura T, Murata Y, Takagi H, Shima J (2007) Identification and classification of genes required for tolerance to freeze-thaw stress revealed by genome-wide screening of Saccharomyces cerevisiae deletion strains. FEMS Yeast Res 7:244–253

    Article  CAS  PubMed  Google Scholar 

  • Attfield PV (1997) Stress tolerance: the key to effective strains of industrial baker’s yeast. Nat Biotechnol 15:1351–1357

    Article  CAS  PubMed  Google Scholar 

  • Boy-Marcotte E, Perrot M, Bussereau F, Boucherie H, Jacquet M (1998) Msn2p and Msn4p control a large number of genes induced at the diauxic transition which are repressed by cyclic AMP in Saccharomyces cerevisiae. J Bacteriol 180:1044–1052

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burrows S (1970) Baker’s yeast. In: Rose AH, Harrison JS (eds) The yeasts, vol 3, Yeast technology. Academic, London, pp 349–420

    Google Scholar 

  • Cardona F, Carrasco P, Perez-Ortin JE, del Olmo M, Aranda A (2007) A novel approach for the improvement of stress resistance in wine yeasts. Int J Food Microbiol 114:83–91

    Article  CAS  PubMed  Google Scholar 

  • Causton HC, Ren B, Koh SS, Harbison CT, Kanin E, Jennings EG, Lee TI, True HL, Lander ES, Young RA (2001) Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell 12:323–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cronwright GR, Rohwer JM, Prior BA (2002) Metabolic control analysis of glycerol synthesis in Saccharomyces cerevisiae. Appl Environ Microbiol 68:4448–4456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Csonka LN (1981) Proline over-production results in enhanced osmotolerance in Salmonella typhimurium. Mol Gen Genet 182:82–86

    Article  CAS  PubMed  Google Scholar 

  • Demae M, Murata Y, Hisano M, Haitani Y, Shima J. Takagi H (2007) Overexpression of two transcriptional factors, Kin28 and Pog1, suppresses the stress sensitivity caused by the rsp5 mutation in Saccharomyces cerevisiae. FEMS Microbiol Lett 277:70–78

    Google Scholar 

  • De Virgilio C, Hottiger T, Dominguez J, Boller T, Wiemken A (1994) The role of trehalose synthesis for the acquisition of thermotolerance in yeast. I. Genetic evidence that trehalose is a thermoprotectant. Eur J Biochem 219:179–186

    Article  PubMed  Google Scholar 

  • Dequin S (2001) The potential of genetic engineering for improving brewing, wine-making and bread making. Appl Microbiol Biotechnol 56:577–588

    Article  CAS  PubMed  Google Scholar 

  • Domitrovic T, Palhano FL, Barja-Fidalgo C, DeFreitas M, Orlando MT, Fernandes PM (2003) Role of nitric oxide in the response of Saccharomyces cerevisiae cells to heat shock and high hydrostatic pressure. FEMS Yeast Res 3:341–346

    Article  CAS  PubMed  Google Scholar 

  • Du X, Takagi H (2005) N-Acetyltransferase Mpr1 confers freeze tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species. J Biochem 138:391–397

    Article  CAS  PubMed  Google Scholar 

  • Du X, Takagi H (2007) N-Acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species. Appl Microbiol Biotechnol 75:1343–1351

    Article  CAS  PubMed  Google Scholar 

  • Estruch F (2000) Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiol Rev 24:469–486

    Article  CAS  PubMed  Google Scholar 

  • Evans IH (1990) In: Spencer JFT, Spencer DM (eds) Yeast technology. Springer-Verlag, Berlin, pp 13–45

    Google Scholar 

  • Franca MB, Panek AD, Eleutherio EC (2007) Oxidative stress and its effects during dehydration. Comp Biochem Physiol A Mol Integr Physiol 146:621–631

    Article  CAS  PubMed  Google Scholar 

  • Gadd GM, Chalmers K, Reed RH (1987) The role of trehalose in dehydration resistance of Saccharomyces cerevisiae. FEMS Microbiol Lett 48:249–254

    Article  CAS  Google Scholar 

  • Hahn YS, Kawai H (1990) Isolation and characterization of freeze-tolerant yeasts from nature available for the frozen-dough method. Agric Biol Chem 54:829–831

    Article  CAS  Google Scholar 

  • Hino A (2002) Safety assessment and public concerns for genetically modified food products: the Japanese experience. Toxicol Pathol 30:126–128

    Article  PubMed  Google Scholar 

  • Hino A, Takano H, Tanaka Y (1987) New freeze-tolerant yeast for frozen dough preparations. Cereal Chem 64:269–275

    Google Scholar 

  • Hino A, Mihara K, Nakashima K, Takano H (1990) Trehalose levels and survival ratio of freeze-tolerant versus freeze-sensitive yeasts. Appl Environ Microbiol 56:1386–1391

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirasawa T, Nakakura Y, Yoshikawa K, Ashitani K, Nagahisa K, Furusawa C, Katakura Y, Shimizu H, Shioya S (2006) Comparative analysis of transcriptional responses to saline stress in the laboratory and brewing strains of Saccharomyces cerevisiae with DNA microarray. Appl Microbiol Biotechnol 70:346–357

    Article  CAS  PubMed  Google Scholar 

  • Hong Z, Lakkineni K, Zhang Z, Verma DPS (2000) Removal of feedback inhibition of ∆1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iinoya K, Kotani T, Sasano Y, Takagi H (2009) Engineering of the yeast antioxidant enzyme Mpr1 for enhanced activity and stability. Biotechnol Bioeng 103:341–352

    Article  CAS  PubMed  Google Scholar 

  • Kaino T, Takagi H (2008) Gene expression profiles and intracellular contents of stress protectants in Saccharomyces cerevisiae under ethanol and sorbitol stresses. Appl Microbiol Biotechnol 79:273–283

    Article  CAS  PubMed  Google Scholar 

  • Kaino T, Tateiwa T, Mizukami-Murata S, Shima J, Takagi H (2008) Self-cloning baker’s yeasts that accumulate proline enhance freeze tolerance in doughs. Appl Environ Microbiol 74:5845–5849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kline L, Sugihara TG (1968) Factors affecting the stability of frozen bread doughs. I. Prepared by the straight dough method. Bakers Dig 42:44–69

    Google Scholar 

  • Landolfo S, Politi H, Angelozzi D, Mannazzu I (2008) ROS accumulation and oxidative damage to cell structures in Saccharomyces cerevisiae wine strains during fermentation of high-sugar-containing medium. Biochim Biophys Acta 1780:892–898

    Article  CAS  PubMed  Google Scholar 

  • Leza MA, Elion EA (1999) POG1, a novel yeast gene, promotes recovery from pheromone arrest via the G1 cyclin CLN2. Genetics 151:531–543

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liljeström PL, Tubb, RS, Korhola MP (1991) Construction of new α-galactosidase-producing yeast strains and the industrial application of these strains. U.S. Patent 5,055,401

    Google Scholar 

  • Liljeström-Suominen PL, Joutsjoki V, Korhola MP (1988) Construction of a stable α-galactosidase producing baker’s yeast. Appl Environ Microbiol 54:245–249

    PubMed  PubMed Central  Google Scholar 

  • Linko Y, Javanainen P, Linko S (1997) Biotechnology of bread baking. Trends Food Sci Technol 8:339–344

    Article  CAS  Google Scholar 

  • Marchler G, Schuller C, Adam G, Ruis H (1993) A Saccharomyces cerevisiae UAS element controlled by protein kinase A activates transcription in response to a variety of stress conditions. EMBO J 12:1997–2003

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Pastor MT, Marchler G, Schuller C, Marchler-Bauer A, Ruis H, Estruch F (1996) The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress-response element (STRE). EMBO J 15:2227–2235

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuura K, Takagi H (2005) Vacuolar functions are involved in stress-protective effect of intracellular proline in Saccharomyces cerevisiae. J Biosci Bioeng 100:538–544

    Article  CAS  PubMed  Google Scholar 

  • Morita Y, Nakamori S, Takagi H (2002) Effect of proline and arginine metabolism on freezing stress of Saccharomyces cerevisiae. J Biosci Bioeng 94:390–394

    Article  CAS  PubMed  Google Scholar 

  • Morita Y, Nakamori S, Takagi H (2003) l-Proline accumulation and freeze tolerance of Saccharomyces cerevisiae are caused by a mutation in the PRO1 gene encoding γ-glutamyl kinase. Appl Environ Microbiol 69:212–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa S, Ouchi K (1994a) Construction from a single parent of baker’s yeast strains with high freeze tolerance and fermentative activity in both lean and sweet doughs. Appl Environ Microbiol 60:3499–3502

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa S, Ouchi K (1994b) Improvement of freeze tolerance of commercial baker’s yeasts in dough by heat treatment before freezing. Biosci Biotechnol Biochem 58:2077–2079

    Article  CAS  Google Scholar 

  • Nakamura T, Ando A, Takagi H, Shima J (2007) Eos1, whose deletion confers sensitivity to oxidative stress, is involved in N-glycosylation in Saccharomyces cerevisiae. Biochem Biophys Res Commun 353:293–298

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Mizukami-Murata S, Ando A, Murata Y, Takagi H, Shima J (2008) Changes in gene expression of commercial baker’s yeast during an air-drying process that simulates dried yeast production. J Biosci Bioeng 106:405–408

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Takahashi S, Takagi H, Shima J (2010) Multicopy suppression of oxidant-sensitive eos1 mutation by IZH2 in Saccharomyces cerevisiae and the involvement of Eos1 in zinc homeostasis. FEMS Yeast Res 10:259–269

    Article  CAS  PubMed  Google Scholar 

  • Nasuno R, Hirano Y, Itoh T, Hakoshima T, Hibi T, Takagi H (2013) Structural and functional analysis of the yeast N-acetyltransferase Mpr1 involved in oxidative stress tolerance via proline metabolism. Proc Natl Acad Sci U S A 110:11821–11826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Needleman R (1991) Control of maltase synthesis in yeast. Mol Microbiol 5:2079–2084

    Article  CAS  PubMed  Google Scholar 

  • Nishimura A, Kotani T, Sasano Y, Takagi H (2010) An antioxidative mechanism mediated by the yeast N-acetyltransferase Mpr1: oxidative stress-induced arginine synthesis and its physiological role. FEMS Yeast Res 10:687–698

    Article  CAS  PubMed  Google Scholar 

  • Nishimura A, Kawahara N, Takagi H (2013) The flavoprotein Tah18-dependent NO synthesis confers high-temperature stress tolerance on yeast cells. Biochem Biophys Res Commun 430:137–143

    Article  CAS  PubMed  Google Scholar 

  • Nomura M, Takagi H (2004) Role of the yeast acetyltransferase Mpr1 in oxidative stress: regulation of oxygen reactive species caused by a toxic proline catabolism intermediate. Proc Natl Acad Sci U S A 101:12616–12621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oda Y, Uno K, Ohta S (1986) Selection of yeasts for breadmaking by the frozen-dough method. Appl Environ Microbiol 52:941–943

    CAS  PubMed  PubMed Central  Google Scholar 

  • Okada N, Ogawa J, Shima J (2014) Comprehensive analysis of genes involved in the oxidative stress tolerance using yeast heterozygous deletion collection. FEMS Yeast Res 14:425–434

    Article  CAS  PubMed  Google Scholar 

  • Osinga KA, Beudeker RF, Plaat JB van der, Hollander JA de (1988) New yeast strains providing for an enhanced rate of the fermentation of sugars, a process to obtain such strains and the use of these strains. Eur. Patent 0306107A2

    Google Scholar 

  • Park JI, Grant CM, Attfield PA, Dawes IW (1997) The freeze-thaw stress response of the yeast Saccharomyces cerevisiae is growth phase specific and is controlled by nutritional state via the RAS-cyclic AMP signal transduction pathway. Appl Environ Microbiol 63:3818–3824

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park JI, Grant CM, Davies MJ, Dawes IW (1998) The cytoplasmic Cu, Zn superoxide dismutase of Saccharomyces cerevisiae is required for resistance to freeze-thaw stress. J Biol Chem 273:22921–22928

    Article  CAS  PubMed  Google Scholar 

  • Pence JW, Kohler GO (1961) Investigations of bread flavor in the U.S. Department of Agriculture. Brot Gebaeck 15:129–134

    Google Scholar 

  • Randez-Gil F, Sanz P, Pietro JA (1999) Engineering baker’s yeast: room for improvement. Trends Biotechnol 17:237–244

    Article  CAS  PubMed  Google Scholar 

  • Sasano Y, Takahashi S, Shima J, Takagi H (2010) Antioxidant N-acetyltransferase Mpr1/2 of industrial baker’s yeast enhances fermentation ability after air-drying stress in bread dough. Int J Food Microbiol 138:181–185

    Article  CAS  PubMed  Google Scholar 

  • Sasano Y, Haitani Y, Hashida K, Ohtsu I, Shima J, Takagi H (2012a) Enhancement of the proline and nitric oxide synthetic pathway improves fermentation ability under multiple baking-associated stress conditions in industrial baker’s yeast. Microb Cell Fact 11:40. doi:10.1186/1475-2859-11-40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasano Y, Haitani Y, Hashida K, Ohtsu I, Shima J, Takagi H (2012b) Overexpression of the transcription activator Msn2 enhances fermentation ability of industrial baker’s yeast in frozen dough. Biosci Biotechnol Biochem 76:624–627

    Article  CAS  PubMed  Google Scholar 

  • Sasano Y, Haitani Y, Hashida K, Ohtsu I, Shima J, Takagi H (2012c) Simultaneous accumulation of proline and trehalose in industrial baker’s yeast enhances fermentation ability in frozen dough. J Biosci Bioeng 113:592–595

    Article  CAS  PubMed  Google Scholar 

  • Sasano Y, Haitani Y, Ohtsu I, Shima J, Takagi H (2012d) Proline accumulation in baker’s yeast enhances high-sucrose stress tolerance and fermentation ability in sweet dough. Int J Food Microbiol 152:40–43

    Article  CAS  PubMed  Google Scholar 

  • Sasano Y, Watanabe D, Ukibe K, Inai T, Ohtsu I, Shimoi H, Takagi H (2012e) Overexpression of the yeast transcription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production. J Biosci Bioeng 113:451–455

    Article  CAS  PubMed  Google Scholar 

  • Sasano Y, Haitani Y, Hashida K, Oshiro S, Shima J, Takagi H (2013) Improvement of fermentation ability under baking-associated stress conditions by altering the POG1 gene expression in baker’s yeast. Int J Food Microbiol 165:241–245

    Article  CAS  PubMed  Google Scholar 

  • Sekine T, Kawaguchi A, Hamano Y, Takagi H (2007) Desensitization of feedback inhibition of the Saccharomyces cerevisiae gamma-glutamyl kinase enhances proline accumulation and freezing tolerance. Appl Environ Microbiol 73:4011–4019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shichiri M, Hoshikawa C, Nakamori S, Takagi H (2001) A novel acetyltransferase found in Saccharomyces cerevisiae Sigma1278b that detoxifies a proline analogue, azetidine-2-carboxylic acid. J Biol Chem 276:41998–42002

    Article  CAS  PubMed  Google Scholar 

  • Shima J, Takagi H (2009) Stress-tolerance of baker’s-yeast (Saccharomyces cerevisiae) cells: stress-protective molecules and genes involved in stress tolerance. Biotechnol Appl Biochem 53:155–164

    Article  CAS  PubMed  Google Scholar 

  • Shima J, Hino A, Yamada-Iyo C, Suzuki Y, Nakajima R, Watanabe H, Mori K, Takano H (1999) Stress tolerance in doughs of Saccharomyces cerevisiae trehalase mutants derived from commercial Baker’s yeast. Appl Environ Microbiol 65:2841–2846

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shima J, Ando A, Takagi H (2008) Possible roles of vacuolar H+-ATPase and mitochondrial function in tolerance to air-drying stress revealed by genome-wide screening of Saccharomyces cerevisiae deletion strains. Yeast 25:179–190

    Article  CAS  PubMed  Google Scholar 

  • Shinyashiki M, Chiang KT, Switzer CH, Gralla EB, Valentine JS, Thiele DJ, Fukuto JM (2000) The interaction of nitric oxide (NO) with the yeast transcription factor Ace1: a model system for NO-protein thiol interactions with implications to metal metabolism. Proc Natl Acad Sci U S A 97:2491–2496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takagi H (2008) Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications. Appl Microbiol Biotechnol 81:211–223

    Article  CAS  PubMed  Google Scholar 

  • Takagi H, Iwamoto F, Nakamori S (1997) Isolation of freeze-tolerant laboratory strains of Saccharomyces cerevisiae from proline-analogue-resistant mutants. Appl Microbiol Biotechnol 47:405–411

    Article  CAS  PubMed  Google Scholar 

  • Takagi H, Sakai K, Morida K, Nakamori S (2000a) Proline accumulation by mutation or disruption of the proline oxidase gene improves resistance to freezing and desiccation stresses in Saccharomyces cerevisiae. FEMS Microbiol Lett 184:103–108

    Article  CAS  PubMed  Google Scholar 

  • Takagi H, Shichiri M, Takemura M, Mohri M, Nakamori S (2000b) Saccharomyces cerevisiae sigma 1278b has novel genes of the N-acetyltransferase gene superfamily required for l-proline analogue resistance. J Bacteriol 182:4249–4256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takagi H, Takaoka M, Kawaguchi A, Kubo Y (2005) Effect of l-proline on sake brewing and ethanol stress in Saccharomyces cerevisiae. Appl Environ Microbiol 71:8656–8662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takagi H, Matsui F, Kawaguchi A, Wu H, Shimoi H, Kubo Y (2007) Construction and analysis of self-cloning sake yeasts that accumulate proline. J Biosci Bioeng 103:377–380

    Article  CAS  PubMed  Google Scholar 

  • Takahashi S, Ando A, Takagi H, Shima J (2009) Insufficiency of copper ion homeostasis causes freeze-thaw injury of yeast cells revealed by indirect gene expression analysis. Appl Environ Microbiol 75:6706–6711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka F, Ando A, Nakamura T, Takagi H, Shima J (2006) Functional genomic analysis of commercial baker’s yeast during initial stages of model dough-fermentation. Food Microbiol 23:717–728

    Article  CAS  PubMed  Google Scholar 

  • Tanaka-Tsuno F, Mizukami-Murata S, Murata Y, Nakamura T, Ando A, Takagi H, Shima J (2007) Functional genomics of commercial baker’s yeasts that have different abilities for sugar utilization and high-sucrose tolerance under different sugar conditions. Yeast 24:901–911

    Article  CAS  PubMed  Google Scholar 

  • Terao Y, Nakamori S, Takagi H (2003) Gene dosage effect of l-proline biosynthetic enzymes on l-proline accumulation and freeze tolerance in Saccharomyces cerevisiae. Appl Environ Microbiol 69:6527–6532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teunissen A, Dumortier F, Gorwa MF, Bauer J, Tanghe A, Loïez A, Smet P, Van Dijck P, Thevelein JM (2002) Isolation and characterization of a freeze-tolerant diploid derivative of an industrial baker’s yeast strain and its use in frozen doughs. Appl Environ Microbiol 68:4780–4787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Dijck P, Colavizza D, Smet P, Thevelein JM (1995) Differential importance of trehalose in stress resistance in fermenting and nonfermenting Saccharomyces cerevisiae cells. Appl Environ Microbiol 61:109–115

    PubMed  PubMed Central  Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759

    Article  CAS  PubMed  Google Scholar 

  • Verstrepen KJ, Iserentant D, Malcorps P, Derdelinckx G, Van Dijck P, Winderickx J, Pretorius IS, Thevelein JM, Delvaux FR (2004) Glucose and sucrose: hazardous fast-food for industrial yeast? Trends Biotechnol 22:531–537

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M, Fukuda K, Asano K, Ohta S (1990) Mutants of baker’s yeasts producing a large amount of isobutyl alcohol or isoamyl alcohol, flavor components of bread. Appl Microbiol Biotechnol 34:154–159

    Article  CAS  Google Scholar 

  • Watanabe M, Watanabe D, Akao T, Shimoi H (2009) Overexpression of MSN2 in a sake yeast strain promotes ethanol tolerance and increases ethanol production in sake brewing. J Biosci Bioeng 107:516–518

    Article  CAS  PubMed  Google Scholar 

  • Wick EL, De Figueiredo M, Wallace DH (1964) The volatile components of white bread prepared by a preferent method. Cereal Chem 41:300–315

    CAS  Google Scholar 

  • Zuzuarregui A, del Olmo ML (2004) Expression of stress response genes in wine strains with different fermentative behavior. FEMS Yeast Res 4:699–710

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants to H.T. and J.S. from the Program for Promotion of Basic Research Activities for Innovative Biosciences and the Program for Promotion of Basic and Applied Researches for Innovations in Bio-oriented industry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Takagi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Takagi, H., Shima, J. (2015). Stress Tolerance of Baker’s Yeast During Bread-Making Processes. In: Takagi, H., Kitagaki, H. (eds) Stress Biology of Yeasts and Fungi. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55248-2_2

Download citation

Publish with us

Policies and ethics