Skip to main content

Genome Editing in Zebrafish and Medaka

  • Chapter
  • First Online:
Book cover Targeted Genome Editing Using Site-Specific Nucleases

Abstract

Two small ornamental fish, zebrafish and medaka, have become popular model vertebrates suitable for genetic analysis. A number of mutant fish defective in organogenesis and biological responses have been isolated from chemical mutagenesis screens and forward genetic analyses of these mutants have identified novel essential regulators involved in morphological and physiological processes. Recently, remarkable innovations in genome editing technologies, such as zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) as well as the clustered interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system, have enabled us to introduce double-strand DNA breaks at target genomic loci, subsequently leading to the disruption of targeted genes (knockout) or their replacement with homologous fragments (knockin). Here, we summarize the usefulness and application of targeted genome modifications in zebrafish and medaka and their relevance to the basic and medical sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CRISPR:

clustered interspaced short palindromic repeats

TALEN:

transcription activator-like effector nuclease

ZFN:

zinc finger nuclease

References

  • Ansai S, Kinoshita M (2014) Targeted mutagenesis using CRISPR/Cas system in medaka. Biol Open 3:362–371

    Google Scholar 

  • Ansai S, Inohaya K, Yoshiura Y, Schartl M, Uemura N, Takahashi R, Kinoshita M (2014) Design, evaluation, and screening methods for efficient targeted mutagenesis with transcription activator-like effector nucleases in medaka. Dev Growth Differ 56:98–107

    Article  CAS  PubMed  Google Scholar 

  • Auer TO, Duroure K, De Cian A, Concordet JP, Del Bene F (2014) Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res 24:142–153

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Basson CT, Bachinsky DR, Lin RC, Levi T, Elkins JA, Soults J, Grayzel D, Kroumpouzou E, Traill TA, Leblanc-Straceski J et al (1997) Mutations in human TBX5 [corrected] cause limb and cardiac malformation in Holt-Oram syndrome. Nat Genet 15:30–35

    Article  CAS  PubMed  Google Scholar 

  • Bedell VM, Wang Y, Campbell JM, Poshusta TL, Starker CG, Krug RG 2nd, Tan W, Penheiter SG, Ma AC, Leung AY et al (2012) In vivo genome editing using a high-efficiency TALEN system. Nature 491:114–118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Donovan A, Brownlie A, Zhou Y, Shepard J, Pratt SJ, Moynihan J, Paw BH, Drejer A, Barut B, Zapata A et al (2000) Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 403:776–781

    Article  CAS  PubMed  Google Scholar 

  • Driever W, Solnica-Krezel L, Schier AF, Neuhauss SC, Malicki J, Stemple DL, Stainier DY, Zwartkruis F, Abdelilah S, Rangini Z et al (1996) A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123:37–46

    CAS  PubMed  Google Scholar 

  • Furutani-Seiki M, Sasado T, Morinaga C, Suwa H, Niwa K, Yoda H, Deguchi T, Hirose Y, Yasuoka A, Henrich T et al (2004) A systematic genome-wide screen for mutations affecting organogenesis in medaka, Oryzias latipes. Mech Dev 121:647–658

    Article  CAS  PubMed  Google Scholar 

  • Garrity DM, Childs S, Fishman MC (2002) The heartstrings mutation in zebrafish causes heart/fin Tbx5 deficiency syndrome. Development 129:4635–4645

    CAS  PubMed  Google Scholar 

  • Haffter P, Granato M, Brand M, Mullins MC, Hammerschmidt M, Kane DA, Odenthal J, van Eeden FJ, Jiang YJ, Heisenberg CP et al (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123:1–36

    CAS  PubMed  Google Scholar 

  • Hisano Y, Ota S, Kawahara A (2014) Genome editing using artificial site-specific nucleases in zebrafish. Dev Growth Differ 56:26–33

    Article  CAS  PubMed  Google Scholar 

  • Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins JE, Humphray S, McLaren K, Matthews L et al (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496:498–503

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jao LE, Wente SR, Chen W (2013) Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci U S A 110:13904–13909

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kawahara A, Nishi T, Hisano Y, Fukui H, Yamaguchi A, Mochizuki N (2009) The sphingolipid transporter spns2 functions in migration of zebrafish myocardial precursors. Science 323:524–527

    Article  CAS  PubMed  Google Scholar 

  • Kupperman E, An S, Osborne N, Waldron S, Stainier DY (2000) A sphingosine-1-phosphate receptor regulates cell migration during vertebrate heart development. Nature 406:192–195

    Article  CAS  PubMed  Google Scholar 

  • Lamason RL, Mohideen MA, Mest JR, Wong AC, Norton HL, Aros MC, Jurynec MJ, Mao X, Humphreville VR, Humbert JE et al (2005) SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans. Science 310:1782–1786

    Article  CAS  PubMed  Google Scholar 

  • Lawson ND, Weinstein BM (2002) In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol 248:307–318

    Article  CAS  PubMed  Google Scholar 

  • Li QY, Newbury-Ecob RA, Terrett JA, Wilson DI, Curtis AR, Yi CH, Gebuhr T, Bullen PJ, Robson SC, Strachan T et al (1997) Holt-Oram syndrome is caused by mutations in TBX5, a member of the Brachyury (T) gene family. Nat Genet 15:21–29

    Article  PubMed  Google Scholar 

  • Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matsui H, Taniguchi Y, Inoue H, Kobayashi Y, Sakaki Y, Toyoda A, Uemura K, Kobayashi D, Takeda S, Takahashi R (2010) Loss of PINK1 in medaka fish (Oryzias latipes) causes late-onset decrease in spontaneous movement. Neurosci Res 66:151–161

    Article  CAS  PubMed  Google Scholar 

  • McVey M, Lee SE (2008) MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings. Trends Genet 24:529–538

    Article  CAS  PubMed  Google Scholar 

  • Montosi G, Donovan A, Totaro A, Garuti C, Pignatti E, Cassanelli S, Trenor CC, Gasparini P, Andrews NC, Pietrangelo A (2001) Autosomal-dominant hemochromatosis is associated with a mutation in the ferroportin (SLC11A3) gene. J Clin Invest 108:619–623

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morita A, Nakahira K, Hasegawa T, Uchida K, Taniguchi Y, Takeda S, Toyoda A, Sakaki Y, Shimada A, Takeda H et al (2012) Establishment and characterization of Roberts syndrome and SC phocomelia model medaka (Oryzias latipes). Dev Growth Differ 54:588–604

    Article  CAS  PubMed  Google Scholar 

  • Njajou OT, Vaessen N, Joosse M, Berghuis B, van Dongen JW, Breuning MH, Snijders PJ, Rutten WP, Sandkuijl LA, Oostra BA et al (2001) A mutation in SLC11A3 is associated with autosomal dominant hemochromatosis. Nat Genet 28:213–214

    Article  CAS  PubMed  Google Scholar 

  • Okuyama T, Yokoi S, Abe H, Isoe Y, Suehiro Y, Imada H, Tanaka M, Kawasaki T, Yuba S, Taniguchi Y et al (2014) A neural mechanism underlying mating preferences for familiar individuals in medaka fish. Science 343:91–94

    Article  CAS  PubMed  Google Scholar 

  • Omran H, Kobayashi D, Olbrich H, Tsukahara T, Loges NT, Hagiwara H, Zhang Q, Leblond G, O'Toole E, Hara C et al (2008) Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins. Nature 456:611–616

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Osborne N, Brand-Arzamendi K, Ober EA, Jin SW, Verkade H, Holtzman NG, Yelon D, Stainier DY (2008) The spinster homolog, two of hearts, is required for sphingosine 1-phosphate signaling in zebrafish. Curr Biol 18:1882–1888

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ota S, Hisano Y, Muraki M, Hoshijima K, Dahlem TJ, Grunwald DJ, Okada Y, Kawahara A (2013) Efficient identification of TALEN-mediated genome modifications using heteroduplex mobility assays. Genes Cells 18:450–458

    Article  CAS  PubMed  Google Scholar 

  • Ota S, Hisano Y, Ikawa Y, Kawahara A (2014) Multiple genome modifications by the CRISPR/Cas9 system in zebrafish. Genes Cells 19:555–564

    Article  CAS  PubMed  Google Scholar 

  • Page-McCaw PS, Chung SC, Muto A, Roeser T, Staub W, Finger-Baier KC, Korenbrot JI, Baier H (2004) Retinal network adaptation to bright light requires tyrosinase. Nat Neurosci 7:1329–1336

    Article  CAS  PubMed  Google Scholar 

  • Spivakov M, Auer TO, Peravali R, Dunham I, Dolle D, Fujiyama A, Toyoda A, Aizu T, Minakuchi Y, Loosli F, et al. (2014) Genomic and phenotypic characterization of a wild medaka population: towards the establishment of an isogenic population genetic resource in fish. G3 (Bethesda) 4:433–445

    Google Scholar 

  • Xiao A, Wang Z, Hu Y, Wu Y, Luo Z, Yang Z, Zu Y, Li W, Huang P, Tong X et al (2013) Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic Acids Res 41:e141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zu Y, Tong X, Wang Z, Liu D, Pan R, Li Z, Hu Y, Luo Z, Huang P, Wu Q et al (2013) TALEN-mediated precise genome modification by homologous recombination in zebrafish. Nat Methods 10:329–331

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Drs. Ota S. and Hisano Y. for valuable discussion. This work was supported by the Funding Program for Next Generation World-Leading Researchers (NEXT Program) and by the Japan Society for the Promotion of Science (JSPS), and a Grant-in-Aid for JSPS Fellows (S.A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsuo Kawahara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Kawahara, A., Yabe, T., Ansai, S., Takada, S., Kinoshita, M. (2015). Genome Editing in Zebrafish and Medaka. In: Yamamoto, T. (eds) Targeted Genome Editing Using Site-Specific Nucleases. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55227-7_8

Download citation

Publish with us

Policies and ethics