Skip to main content
Book cover

Polyamines pp 315–329Cite as

Targeting the Polyamine Biosynthetic Pathway in Parasitic Protozoa

  • Chapter
  • First Online:
  • 1862 Accesses

Abstract

Malaria, trypanosomiasis, and leishmaniasis are life-threatening parasitic diseases for which safe and more effective medicines are urgently needed. The polyamine biosynthetic pathway in protozoan pathogens is a validated target for the development of drugs, as demonstrated by the current use of α-difluoromethylornithine (DFMO) to treat patients diagnosed with human African trypanosomias (HAT). These parasites have evolved novel polyamine metabolic pathways that are considerably different from those of the human host. For example, trypanosomes contain a novel spermidine/glutathione conjugate termed trypanothione, and uniquely in these parasites S-adenosylmethionine decarboxylase (AdoMetDC) is activated by heterodimer formation with a catalytically dead homologue. In Plasmodium parasites, AdoMetDC and ODC are fused as a bifunctional protein. Trypanosoma cruzi lacks ODC and relies on polyamine transporters. In this chapter, we discuss these differences and highlight additional aspects of these organisms that could be exploited as potential therapeutic strategies, including differences in protein turnover rates and polyamine transport, the latter of which could be used for delivery of cytotoxic compounds.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Almrud J, Oliveira M, Grishin N, Phillips M, Hackert M (2000) Crystal structure of human ornithine decarboxylase at 2.1 Å resolution: structural perspectives of antizyme binding. J Mol Biol 295:7–16

    Article  CAS  PubMed  Google Scholar 

  • Ariyanayagam MR, Oza SL, Guther MLS, Fairlamb AH (2005) Phenotypic analysis of trypanothione synthetase knockdown in the African trypanosome. Biochem J 391:425–432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bacchi C, Nathan H, Hutner S, McCann P, Sjoerdsma A (1980) Polyamine metabolism: a potential therapeutic target in trypanosomes. Science 210:332–334

    Article  CAS  PubMed  Google Scholar 

  • Bacchi CJ, Nathan HC, Livingston T, Valladares G, Saric M, Sayer PD, Njogu AR, Clarkson AB Jr (1990) Differential susceptibility to dl-alpha-difluoromethylornithine in clinical isolates of Trypanosoma brucei rhodesiense. Antimicrob Agents Chemother 34(6):1183–1188

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bacchi CJ, Nathan HC, Yarlett N, Goldberg B, McCann PP, Bitonti AJ, Sjoerdsma A (1992) Cure of murine Trypanosoma brucei rhodesiense infections with an S-adenosylmethionine decarboxylase inhibitor. Antimicrob Agents Chemother 36(12):2736–2740

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bacchi CJ, Brun R, Croft SL, Alicea K, Buhler Y (1996) In vivo trypanocidal activities of new S-adenosylmethionine decarboxylase inhibitors. Antimicrob Agents Chemother 40:1448–1453

    CAS  PubMed Central  PubMed  Google Scholar 

  • Balasegaram M, Young H, Chappuis F, Priotto G, Raguenaud ME, Checchi F (2009) Effectiveness of melarsoprol and eflornithine as first-line regimens for gambiense sleeping sickness in nine Medecins Sans Frontieres programmes. Trans R Soc Trop Med Hyg 103(3):280–290

    Article  CAS  PubMed  Google Scholar 

  • Barker RH Jr, Liu H, Hirth B, Celatka CA, Fitzpatrick R, Xiang Y, Willert EK, Phillips MA, Kaiser M, Bacchi CJ, Rodriguez A, Yarlett N, Klinger JD, Sybertz E (2009) Novel S-adenosylmethionine decarboxylase inhibitors for the treatment of human African trypanosomiasis. Antimicrob Agents Chemother 53(5):2052–2058

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barrett MP, Croft SL (2012) Management of trypanosomiasis and leishmaniasis. Br Med Bull 104:175–196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Birkholtz LM, Williams M, Niemand J, Louw AI, Persson L, Heby O (2011) Polyamine homoeostasis as a drug target in pathogenic protozoa: peculiarities and possibilities. Biochem J 438(2):229–244

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bitonti AJ, McCann PP, Sjoerdsma A (1987) Plasmodium falciparum and Plasmodium berghei: effects of ornithine decarboxylase inhibitors on erythrocytic schizogony. Exp Parasitol 64(2):237–243

    Article  CAS  PubMed  Google Scholar 

  • Bitonti AJ, Byers TL, Bush TL, Casara PJ, Bacchi CJ, Clarkson AB Jr, McCann PP, Sjoerdsma A (1990) Cure of Trypanosoma brucei brucei and Trypanosoma brucei rhodesiense infections in mice with an irreversible inhibitor of S-adenosylmethionine decarboxylase. Antimicrob Agents Chemother 34:1485–1490

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boitz JM, Yates PA, Kline C, Gaur U, Wilson ME, Ullman B, Roberts SC (2009) Leishmania donovani ornithine decarboxylase is indispensable for parasite survival in the mammalian host. Infect Immun 77(2):756–763

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brun R, Buhler Y, Sandmeier U, Kaminsky R, Bacchi CJ, Rattendi D, Lane S, Croft SL, Snowdon D, Yardley V, Caravatti G, Frei J, Stanek J, Mett H (1996) In vitro trypanocidal activities of new S-adenosylmethionine decarboxylase inhibitors. Antimicrob Agents Chemother 40(6):1442–1447

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burrows JN, Chibale K, Wells TN (2011) The state of the art in anti-malarial drug discovery and development. Curr Top Med Chem 11(10):1226–1254

    Article  CAS  PubMed  Google Scholar 

  • Burrows JN, Hooft van Huijsduijnen R, Mohrle JJ, Oeuvray C, Wells TN (2013) Designing the next generation of medicines for malaria control and eradication. Malar J 12:187

    Article  PubMed Central  PubMed  Google Scholar 

  • Casero RA, Pegg AE (2009) Polyamine catabolism and disease. Biochem J 421(3):323–338

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cassera MB, Hazleton KZ, Merino EF, Obaldia N 3rd, Ho MC, Murkin AS, DePinto R, Gutierrez JA, Almo SC, Evans GB, Babu YS, Schramm VL (2011) Plasmodium falciparum parasites are killed by a transition state analogue of purine nucleoside phosphorylase in a primate animal model. PLoS One 6(11):e26916. doi:10.1371/journal.pone.0026916

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clark K, Niemand J, Reeksting S, Smit S, van Brummelen AC, Williams M, Louw AI, Birkholtz L (2010) Functional consequences of perturbing polyamine metabolism in the malaria parasite, Plasmodium falciparum. Amino Acids 38(2):633–644

    Article  CAS  PubMed  Google Scholar 

  • Croft SL, Sundar S, Fairlamb AH (2006) Drug resistance in leishmaniasis. Clin Microbiol Rev 19(1):111–126

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • D’Antonio EL, Ullman B, Roberts SC, Dixit UG, Wilson ME, Hai Y, Christianson DW (2013) Crystal structure of arginase from Leishmania mexicana and implications for the inhibition of polyamine biosynthesis in parasitic infections. Arch Biochem Biophys 535(2):163–176

    Article  PubMed Central  PubMed  Google Scholar 

  • Das Gupta R, Krause-Ihle T, Bergmann B, Muller IB, Khomutov AR, Muller S, Walter RD, Luersen K (2005) 3-Aminooxy-1-aminopropane and derivatives have an antiproliferative effect on cultured Plasmodium falciparum by decreasing intracellular polyamine concentrations. Antimicrob Agents Chemother 49(7):2857–2864

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fairhurst RM, Nayyar GM, Breman JG, Hallett R, Vennerstrom JL, Duong S, Ringwald P, Wellems TE, Plowe CV, Dondorp AM (2012) Artemisinin-resistant malaria: research challenges, opportunities, and public health implications. Am J Trop Med Hyg 87(2):231–241

    Article  PubMed Central  PubMed  Google Scholar 

  • Fan E, Baker D, Fields S, Gelb MH, Buckner FS, Van Voorhis WC, Phizicky E, Dumont M, Mehlin C, Grayhack E, Sullivan M, Verlinde C, Detitta G, Meldrum DR, Merritt EA, Earnest T, Soltis M, Zucker F, Myler PJ, Schoenfeld L, Kim D, Worthey L, Lacount D, Vignali M, Li J, Mondal S, Massey A, Carroll B, Gulde S, Luft J, Desoto L, Holl M, Caruthers J, Bosch J, Robien M, Arakaki T, Holmes M, Le Trong I, Hol WG (2008) Structural genomics of pathogenic protozoa: an overview. Methods Mol Biol 426:497–513

    Article  CAS  PubMed  Google Scholar 

  • Gaur U, Roberts SC, Dalvi RP, Corraliza I, Ullman B, Wilson ME (2007) An effect of parasite-encoded arginase on the outcome of murine cutaneous leishmaniasis. J Immunol 179(12):8446–8453

    Article  CAS  PubMed  Google Scholar 

  • Gerner EW, Meyskens FL Jr (2004) Polyamines and cancer: old molecules, new understanding. Nat Rev Cancer 4(10):781–792

    Article  CAS  PubMed  Google Scholar 

  • Gilroy C, Olenyik T, Roberts SC, Ullman B (2011) Spermidine synthase is required for virulence of Leishmania donovani. Infect Immun 79(7):2764–2769

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grishin N, Osterman A, Brooks H, Phillips M, Goldsmith E (1999) The X-ray structure of ornithine decarboxylase from Trypanosoma brucei: the native structure and the structure in complex with α-difluoromethylornithine. Biochemistry 38:15174–15184

    Article  CAS  PubMed  Google Scholar 

  • Hasne MP, Ullman B (2011) Genetic and biochemical analysis of protozoal polyamine transporters. Methods Mol Biol 720:309–326

    Article  CAS  PubMed  Google Scholar 

  • Hasne MP, Coppens I, Soysa R, Ullman B (2010) A high-affinity putrescine-cadaverine transporter from Trypanosoma cruzi. Mol Microbiol 76(1):78–91

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heby O, Roberts SC, Ullman B (2003) Polyamine biosynthetic enzymes as drug targets in parasitic protozoa. Biochem Soc Trans 31(2):415–419

    Article  CAS  PubMed  Google Scholar 

  • Heby O, Persson L, Rentala M (2007) Targeting the polyamine biosynthetic enzymes: a promising approach to therapy of African sleeping sickness, Chagas’ disease, and leishmaniasis. Amino Acids 33(2):359–366

    Article  CAS  PubMed  Google Scholar 

  • Hirth B, Barker RH Jr, Celatka CA, Klinger JD, Liu H, Nare B, Nijjar A, Phillips MA, Sybertz E, Willert EK, Xiang Y (2009) Discovery of new S-adenosylmethionine decarboxylase inhibitors for the treatment of human African trypanosomiasis (HAT). Bioorg Med Chem Lett 19(11):2916–2919

    Article  CAS  PubMed  Google Scholar 

  • Huynh TT, Huynh VT, Harmon MA, Phillips MA (2003) Gene knockdown of γ-glutamylcysteine synthetase by RNAi in the parasitic protozoa Trypanosoma brucei demonstrates that it is an essential enzyme. J Biol Chem 278:39794–39800

    Article  CAS  PubMed  Google Scholar 

  • Jacobs RT, Nare B, Phillips MA (2011) State of the art in African trypanosome drug discovery. Curr Top Med Chem 11(10):1255–1274

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kennedy PG (2013) Clinical features, diagnosis, and treatment of human African trypanosomiasis (sleeping sickness). Lancet Neurol 12(2):186–194

    Article  PubMed  Google Scholar 

  • Krauth-Siegel LR, Comini MA, Schlecker T (2007) The trypanothione system. Subcell Biochem 44:231–251

    Article  PubMed  Google Scholar 

  • Krieger S, Schwarz W, Ariyanayagam MR, Fairlamb AH, Krauth-Siegel RL, Clayton C (2000) Trypanosomes lacking trypanothione reductase are avirulent and show increased sensitivity to oxidative stress. Mol Microbiol 35:542–552

    Article  CAS  PubMed  Google Scholar 

  • Landfear SM (2011) Nutrient transport and pathogenesis in selected parasitic protozoa. Eukaryot Cell 10(4):483–493

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li F, Hua S, Wang C, Gottesdiener K (1998) Trypanosoma brucei brucei: characterization of an ODC null bloodstream form mutant and the action of alpha-difluoromethylornithine. Exp Parasitiol 88:255–257

    Article  CAS  Google Scholar 

  • Liew LP, Pearce AN, Kaiser M, Copp BR (2013) Synthesis and in vitro and in vivo evaluation of antimalarial polyamines. Eur J Med Chem 69:22–31

    Article  CAS  PubMed  Google Scholar 

  • Miller LH, Ackerman HC, Su XZ, Wellems TE (2013) Malaria biology and disease pathogenesis: insights for new treatments. Nat Med 19(2):156–167

    Article  CAS  PubMed  Google Scholar 

  • Miotto O et al (2013) Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia. Nat Genet 45(6):648–655

    Article  CAS  PubMed  Google Scholar 

  • Monge-Maillo B, Lopez-Velez R (2013) Therapeutic options for visceral leishmaniasis. Drugs 73(17):1863–1888

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nguyen S, Jones DC, Wyllie S, Fairlamb AH, Phillips MA (2013) Allosteric activation of trypanosomatid deoxyhypusine synthase by a catalytically dead paralog. J Biol Chem 288(21):15256–15267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Niemand J, Louw AI, Birkholtz L, Kirk K (2012) Polyamine uptake by the intraerythrocytic malaria parasite, Plasmodium falciparum. Int J Parasitol 42(10):921–929

    Article  CAS  PubMed  Google Scholar 

  • Nunes MC, Dones W, Morillo CA, Encina JJ, Ribeiro AL (2013) Chagas disease: an overview of clinical and epidemiological aspects. J Am Coll Cardiol 62(9):767–776

    Article  PubMed  Google Scholar 

  • Oza SL, Tetaud E, Ariyanayagam MR, Warnon SS, Fairlamb AH (2002) A single enzyme catalyses formation of trypanothione from glutathione and spermidine in Trypanosoma cruzi. J Biol Chem 277:35853–35861

    Article  CAS  PubMed  Google Scholar 

  • Patterson S, Alphey MS, Jones DC, Shanks EJ, Street IP, Frearson JA, Wyatt PG, Gilbert IH, Fairlamb AH (2011) Dihydroquinazolines as a novel class of Trypanosoma brucei trypanothione reductase inhibitors: discovery, synthesis, and characterization of their binding mode by protein crystallography. J Med Chem 54(19):6514–6530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Phillips MA, Coffino P, Wang CC (1987) Cloning and sequencing of the ornithine decarboxylase gene from Trypanosoma brucei. Implications for enzyme turnover and selective α-difluoromethylornithine inhibition. J Biol Chem 262:8721–8727

    CAS  PubMed  Google Scholar 

  • Priotto G, Kasparian S, Mutombo W, Ngouama D, Ghorashian S, Arnold U, Ghabri S, Baudin E, Buard V, Kazadi-Kyanza S, Ilunga M, Mutangala W, Pohlig G, Schmid C, Karunakara U, Torreele E, Kande V (2009) Nifurtimox-eflornithine combination therapy for second-stage African Trypanosoma brucei gambiense trypanosomiasis: a multicentre, randomised, phase III, non-inferiority trial. Lancet 374(9683):56–64

    Article  CAS  PubMed  Google Scholar 

  • Roberts SC, Jiang Y, Jardim A, Carter NS, Heby O, Ullman B (2001) Genetic analysis of spermidine synthase from Leishmania donovani. Mol Biochem Parasitol 115(2):217–226

    Article  CAS  PubMed  Google Scholar 

  • Roberts S, Scott J, Gasteier J, Jiang Y, Brooks B, Jardim A, Carter N, Heby O, Ullman B (2002) S-Adenosylmethionine decarboxylase from Leishmania donovani: molecular, genetic and biochemical characterization of null mutants and overproducers. J Biol Chem 277:5902–5909

    Article  CAS  PubMed  Google Scholar 

  • Roberts SC, Tancer MJ, Polinsky MR, Gibson KM, Heby O, Ullman B (2004) Arginase plays a pivotal role in polyamine precursor metabolism in Leishmania. Characterization of gene deletion mutants. J Biol Chem 279(22):23668–23678

    Article  CAS  PubMed  Google Scholar 

  • Roberts SC, Jiang Y, Gasteier J, Frydman B, Marton LJ, Heby O, Ullman B (2007) Leishmania donovani polyamine biosynthetic enzyme overproducers as tools to investigate the mode of action of cytotoxic polyamine analogs. Antimicrob Agents Chemother 51(2):438–445

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rudenko G (2011) African trypanosomes: the genome and adaptations for immune evasion. Essays Biochem 51:47–62

    CAS  PubMed  Google Scholar 

  • Smithson DC, Lee J, Shelat AA, Phillips MA, Guy RK (2010a) Discovery of potent and selective inhibitors of Trypanosoma brucei ornithine decarboxylase. J Biol Chem 285(22):16771–16781

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smithson DC, Shelat AA, Baldwin J, Phillips MA, Guy RK (2010b) Optimization of a non-radioactive high-throughput assay for decarboxylase enzymes. Assay Drug Dev Technol 8(2):175–185. doi:10.1089/adt.2009.0249

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Spinks D, Torrie LS, Thompson S, Harrison JR, Frearson JA, Read KD, Fairlamb AH, Wyatt PG, Gilbert IH (2012) Design, synthesis and biological evaluation of Trypanosoma brucei trypanothione synthetase inhibitors. ChemMedChem 7(1):95–106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stuart K, Brun R, Croft S, Fairlamb A, Gurtler RE, McKerrow J, Reed S, Tarleton R (2008) Kinetoplastids: related protozoan pathogens, different diseases. J Clin Invest 118(4):1301–1310

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Taylor MC, Kaur H, Blessington B, Kelly JM, Wilkinson SR (2008) Validation of spermidine synthase as a drug target in African trypanosomes. Biochem J 409(2):563–569

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ting LM, Shi W, Lewandowicz A, Singh V, Mwakingwe A, Birck MR, Ringia EA, Bench G, Madrid DC, Tyler PC, Evans GB, Furneaux RH, Schramm VL, Kim K (2005) Targeting a novel Plasmodium falciparum purine recycling pathway with specific immucillins. J Biol Chem 280(10):9547–9554

    Article  CAS  PubMed  Google Scholar 

  • Torrie LS, Wyllie S, Spinks D, Oza SL, Thompson S, Harrison JR, Gilbert IH, Wyatt PG, Fairlamb AH, Frearson JA (2009) Chemical validation of trypanothione synthetase: a potential drug target for human trypanosomiasis. J Biol Chem 284(52):36137–36145

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • van Brummelen AC, Olszewski KL, Wilinski D, Llinas M, Louw AI, Birkholtz LM (2009) Co-inhibition of Plasmodium falciparum S-adenosylmethionine decarboxylase/ornithine decarboxylase reveals perturbation-specific compensatory mechanisms by transcriptome, proteome, and metabolome analyses. J Biol Chem 284(7):4635–4646

    Article  PubMed Central  PubMed  Google Scholar 

  • Velez N, Brautigam CA, Phillips MA (2013) Trypanosoma brucei S-adenosylmethionine decarboxylase N terminus is essential for allosteric activation by the regulatory subunit prozyme. J Biol Chem 288(7):5232–5240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vincent IM, Creek D, Watson DG, Kamleh MA, Woods DJ, Wong PE, Burchmore RJ, Barrett MP (2010) A molecular mechanism for eflornithine resistance in African trypanosomes. PLoS Pathog 6(11):e1001204. doi:10.1371/journal.ppat.1001204

    Article  PubMed Central  PubMed  Google Scholar 

  • Willert EK, Phillips MA (2008) Regulated expression of an essential allosteric activator of polyamine biosynthesis in African trypanosomes. PLoS Pathog 4(10):e1000183. doi:10.1371/journal.ppat.1000183

    Article  PubMed Central  PubMed  Google Scholar 

  • Willert EK, Phillips MA (2009) Cross-species activation of trypanosome S-adenosylmethionine decarboxylase by the regulatory subunit prozyme. Mol Biochem Parasitol 168(1):1–6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Willert E, Phillips MA (2012) Regulation and function of polyamines in African trypanosomes. Trends Parasitol 28(2):66–72. doi:10.1016/j.pt.2011.11.001

    Article  CAS  PubMed  Google Scholar 

  • Willert EK, Fitzpatrick R, Phillips MA (2007) Allosteric regulation of an essential trypanosome polyamine biosynthetic enzyme by a catalytically dead homolog. Proc Natl Acad Sci USA 104(20):8275–8280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wright PS, Byers TL, Cross-Doersen DE, McCann PP, Bitonti AJ (1991a) Irreversible inhibition of S-adenosylmethionine decarboxylase in Plasmodium falciparum-infected erythrocytes: growth inhibition in vitro. Biochem Pharmacol 41(11):1713–1718

    Article  CAS  PubMed  Google Scholar 

  • Wright PS, Cross-Doersen DE, Schroeder KK, Bowlin TL, McCann PP, Bitonti AJ (1991b) Disruption of Plasmodium falciparum-infected erythrocyte cytoadherence to human melanoma cells with inhibitors of glycoprotein processing. Biochem Pharmacol 41(12):1855–1861

    Article  CAS  PubMed  Google Scholar 

  • Wyllie S, Oza SL, Patterson S, Spinks D, Thompson S, Fairlamb AH (2009) Dissecting the essentiality of the bifunctional trypanothione synthetase-amidase in Trypanosoma brucei using chemical and genetic methods. Mol Microbiol 74(3):529–540

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xiao Y, McCloskey DE, Phillips MA (2009) RNA interference-mediated silencing of ornithine decarboxylase and spermidine synthase genes in Trypanosoma brucei provides insight into regulation of polyamine biosynthesis. Eukaryot Cell 8(5):747–755

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xiao Y, Nguyen S, Kim SH, Volkov OA, Tu BP, Phillips MA (2013) Product feedback regulation implicated in translational control of the Trypanosoma brucei S-adenosylmethionine decarboxylase regulatory subunit prozyme. Mol Microbiol 88(5):846–861

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yakubu MA, Majumder S, Kierszenbaum F (1993) Inhibition of S-adenosyl-l-methionine (AdoMet) decarboxylase by the decarboxylated AdoMet analog 5′-([(Z)-4-amino-2-butenyl]methylamino)-5′-deoxyadenosine (MDL 73811) decreases the capacities of Trypanosoma cruzi to infect and multiply within a mammalian host cell. J Parasitol 79(4):525–532

    Article  CAS  PubMed  Google Scholar 

  • Yun O, Priotto G, Tong J, Flevaud L, Chappuis F (2010) NECT is next: implementing the new drug combination therapy for Trypanosoma brucei gambiense sleeping sickness. PLoS Negl Trop Dis 4(5):e720. doi:10.1371/journal.pntd.0000720

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret A. Phillips .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Velez, N., Phillips, M.A. (2015). Targeting the Polyamine Biosynthetic Pathway in Parasitic Protozoa. In: Kusano, T., Suzuki, H. (eds) Polyamines. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55212-3_24

Download citation

Publish with us

Policies and ethics