Advertisement

Polyamines pp 217-228 | Cite as

Polyamine Block of Inwardly Rectifying Potassium (Kir) Channels

  • Harley T. Kurata
Chapter

Abstract

Inwardly rectifying potassium (Kir) channels were first identified based on their unique functional property of preferential conductance of potassium ions into the cell. The property of inward rectification differs significantly from their more widely studied Kv (voltage-gated potassium) channel relatives, which exhibit outward rectification resulting from voltage-dependent opening and closing of the channel pore. Rather, inward rectification arises from asymmetrical voltage-dependent blockade of these channels by endogenous intracellular polyamines. This distinct role of polyamines enables the physiological function of Kir channels to maintain a substantial potassium conductance when cells are at rest, but to shut down their conductance when faced with depolarizing stimuli to allow excitation events (e.g., action potentials) to take place. Functional studies of cloned Kir channels, and recent crystallographic insights, have revealed the importance of numerous side chains that line the channel and interact with polyamines as they move toward a stable binding site. The displacement of permeating K+ ions in the channel pore, coupled to polyamine migration through the pore, underlies the very steeply voltage-dependent blockade.

Keywords

Andersen’s syndrome Electrophysiology Inward rectifier Ion channel Long QT Polyamine Potassium channel Short QT Spermine 

References

  1. Bavro VN, De ZR, Schmidt MR, Muniz JR, Zubcevic L, Sansom MS, Venien-Bryan C, Tucker SJ (2012) Structure of a KirBac potassium channel with an open bundle crossing indicates a mechanism of channel gating. Nat Struct Mol Biol 19:158–163PubMedCentralPubMedCrossRefGoogle Scholar
  2. Chang HK, Yeh SH, Shieh RC (2003) The effects of spermine on the accessibility of residues in the M2 segment of Kir2.1 channels expressed in Xenopus oocytes. J Physiol 553:101–112PubMedCentralPubMedCrossRefGoogle Scholar
  3. Guo D, Lu Z (2002) IRK1 inward rectifier K(+) channels exhibit no intrinsic rectification. J Gen Physiol 120:539–551PubMedCentralPubMedCrossRefGoogle Scholar
  4. Guo D, Lu Z (2003) Interaction mechanisms between polyamines and IRK1 inward rectifier K+ channels. J Gen Physiol 122:485–500PubMedCentralPubMedCrossRefGoogle Scholar
  5. Hagiwara S, Miyazaki S, Rosenthal NP (1976) Potassium current and the effect of cesium on this current during anomalous rectification of the egg cell membrane of a starfish. J Gen Physiol 67:621–638PubMedCrossRefGoogle Scholar
  6. Hansen SB, Tao X, MacKinnon R (2011) Structural basis of PIP2 activation of the classical inward rectifier K+ channel Kir2.2. Nature (Lond) 477:495–498CrossRefGoogle Scholar
  7. Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y (2010) Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev 90:291–366PubMedCrossRefGoogle Scholar
  8. Ho K, Nichols CG, Lederer WJ, Lytton J, Vassilev PM, Kanazirska MV, Hebert SC (1993) Cloning and expression of an inwardly rectifying ATP-regulated potassium channel. Nature (Lond) 362:31–38CrossRefGoogle Scholar
  9. Hodgkin AL, Huxley AF (1952) The components of membrane conductance in the giant axon of Loligo. J Physiol 116:473–496PubMedCentralPubMedCrossRefGoogle Scholar
  10. Hutter OF, Noble D (1960) Rectifying properties of heart muscle. Nature (Lond) 188:495CrossRefGoogle Scholar
  11. Inagaki N, Gonoi T, Clement JP, Namba N, Inazawa J, Gonzalez G, Aguilar-Bryan L, Seino S, Bryan J (1995) Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science 270:1166–1170PubMedCrossRefGoogle Scholar
  12. John SA, Xie LH, Weiss JN (2004) Mechanism of inward rectification in Kir channels. J Gen Physiol 123:623–625PubMedCentralPubMedCrossRefGoogle Scholar
  13. Kubo Y, Murata Y (2001) Control of rectification and permeation by two distinct sites after the second transmembrane region in Kir2.1 K+ channel. J Physiol 531:645–660PubMedCentralPubMedCrossRefGoogle Scholar
  14. Kubo Y, Baldwin TJ, Jan YN, Jan LY (1993a) Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature (Lond) 362:127–133CrossRefGoogle Scholar
  15. Kubo Y, Reuveny E, Slesinger PA, Jan YN, Jan LY (1993b) Primary structure and functional expression of a rat G-protein-coupled muscarinic potassium channel. Nature (Lond) 364:802–806CrossRefGoogle Scholar
  16. Kubo Y, Adelman JP, Clapham DE, Jan LY, Karschin A, Kurachi Y, Lazdunski M, Nichols CG, Seino S, Vandenberg CA (2005) International Union of Pharmacology. LIV. Nomenclature and molecular relationships of inwardly rectifying potassium channels. Pharmacol Rev 57:509–526PubMedCrossRefGoogle Scholar
  17. Kurata HT, Phillips LR, Rose T, Loussouarn G, Herlitze S, Fritzenschaft H, Enkvetchakul D, Nichols CG, Baukrowitz T (2004) Molecular basis of inward rectification: polyamine interaction sites located by combined channel and ligand mutagenesis. J Gen Physiol 124:541–554PubMedCentralPubMedCrossRefGoogle Scholar
  18. Kurata HT, Marton LJ, Nichols CG (2006) The polyamine binding site in inward rectifier K+ channels. J Gen Physiol 127:467–480PubMedCentralPubMedCrossRefGoogle Scholar
  19. Kurata HT, Cheng WW, Arrabit C, Slesinger PA, Nichols CG (2007) The role of the cytoplasmic pore in inward rectification of Kir2.1 channels. J Gen Physiol 130:145–155PubMedCentralPubMedCrossRefGoogle Scholar
  20. Kurata HT, Zhu EA, Nichols CG (2010) Locale and chemistry of spermine binding in the archetypal inward rectifier Kir2.1. J Gen Physiol 135:495–508PubMedCentralPubMedCrossRefGoogle Scholar
  21. Kurata HT, Akrouh A, Li JB, Marton LJ, Nichols CG (2013) Scanning the topography of polyamine blocker binding in an inwardly rectifying potassium channel. J Biol Chem 288:6591–6601PubMedCentralPubMedCrossRefGoogle Scholar
  22. Lopatin AN, Nichols CG (1996) [K+] dependence of polyamine-induced rectification in inward rectifier potassium channels (IRK1, Kir2.1). J Gen Physiol 108:105–113PubMedCrossRefGoogle Scholar
  23. Lopatin AN, Makhina EN, Nichols CG (1994) Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature (Lond) 372:366–369CrossRefGoogle Scholar
  24. Lopatin AN, Makhina EN, Nichols CG (1995) The mechanism of inward rectification of potassium channels: “long-pore plugging” by cytoplasmic polyamines. J Gen Physiol 106:923–955PubMedCrossRefGoogle Scholar
  25. Lopes CM, Zhang H, Rohacs T, Jin T, Yang J, Logothetis DE (2002) Alterations in conserved Kir channel-PIP2 interactions underlie channelopathies. Neuron 34:933–944PubMedCrossRefGoogle Scholar
  26. Lu Z (2004) Mechanism of rectification in inward-rectifier K+ channels. Annu Rev Physiol 66:103–129PubMedCrossRefGoogle Scholar
  27. Lu Z, MacKinnon R (1994) Electrostatic tuning of Mg2+ affinity in an inward-rectifier K+ channel. Nature (Lond) 371:243–246CrossRefGoogle Scholar
  28. Matsuda H, Saigusa A, Irisawa H (1987) Ohmic conductance through the inwardly rectifying K channel and blocking by internal Mg2+. Nature (Lond) 325:156–159CrossRefGoogle Scholar
  29. Nichols CG, Lopatin AN (1997) Inward rectifier potassium channels. Annu Rev Physiol 59:171–191PubMedCrossRefGoogle Scholar
  30. Nishida M, Cadene M, Chait BT, MacKinnon R (2007) Crystal structure of a Kir3.1-prokaryotic Kir channel chimera. EMBO J 26:4005–4015PubMedCentralPubMedCrossRefGoogle Scholar
  31. Noble D (1962) A modification of the Hodgkin–Huxley equations applicable to Purkinje fibre action and pace-maker potentials. J Physiol 160:317–352PubMedCentralPubMedCrossRefGoogle Scholar
  32. Pearson WL, Nichols CG (1998) Block of the Kir2.1 channel pore by alkylamine analogues of endogenous polyamines. J Gen Physiol 112:351–363PubMedCentralPubMedCrossRefGoogle Scholar
  33. Pegan S, Arrabit C, Zhou W, Kwiatkowski W, Collins A, Slesinger PA, Choe S (2005) Cytoplasmic domain structures of Kir2.1 and Kir3.1 show sites for modulating gating and rectification. Nat Neurosci 8:279–287PubMedCrossRefGoogle Scholar
  34. Phillips LR, Nichols CG (2003) Ligand-induced closure of inward rectifier Kir6.2 channels traps spermine in the pore. J Gen Physiol 122:795–804PubMedCentralPubMedCrossRefGoogle Scholar
  35. Phillips LR, Enkvetchakul D, Nichols CG (2003) Gating dependence of inner pore access in inward rectifier K(+) channels. Neuron 37:953–962PubMedCrossRefGoogle Scholar
  36. Plaster NM, Tawil R, Tristani-Firouzi M, Canun S, Bendahhou S, Tsunoda A, Donaldson MR, Iannaccone ST, Brunt E, Barohn R, Clark J, Deymeer F, George AL Jr, Fish FA, Hahn A, Nitu A, Ozdemir C, Serdaroglu P, Subramony SH, Wolfe G, Fu YH, Ptacek LJ (2001) Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen’s syndrome. Cell 105:511–519PubMedCrossRefGoogle Scholar
  37. Priori SG, Pandit SV, Rivolta I, Berenfeld O, Ronchetti E, Dhamoon A, Napolitano C, Anumonwo J, di Barletta MR, Gudapakkam S, Bosi G, Stramba-Badiale M, Jalife J (2005) A novel form of short QT syndrome (SQT3) is caused by a mutation in the KCNJ2 gene. Circ Res 96:800–807PubMedCrossRefGoogle Scholar
  38. Shin HG, Lu Z (2005) Mechanism of the voltage sensitivity of IRK1 inward-rectifier K+ channel block by the polyamine spermine. J Gen Physiol 125:413–426PubMedCentralPubMedCrossRefGoogle Scholar
  39. Shin HG, Xu Y, Lu Z (2005) Evidence for sequential ion-binding loci along the inner pore of the IRK1 inward-rectifier K+ channel. J Gen Physiol 126:123–135PubMedCentralPubMedCrossRefGoogle Scholar
  40. Shyng S, Ferrigni T, Nichols CG (1997) Control of rectification and gating of cloned KATP channels by the Kir6.2 subunit. J Gen Physiol 110:141–153PubMedCentralPubMedCrossRefGoogle Scholar
  41. Taglialatela M, Wible BA, Caporaso R, Brown AM (1994) Specification of pore properties by the carboxyl terminus of inwardly rectifying K+ channels. Science 264:844–847PubMedCrossRefGoogle Scholar
  42. Tristani-Firouzi M, Etheridge SP (2010) Kir 2.1 channelopathies: the Andersen–Tawil syndrome. Pflugers Arch 460:289–294PubMedCrossRefGoogle Scholar
  43. Tristani-Firouzi M, Jensen JL, Donaldson MR, Sansone V, Meola G, Hahn A, Bendahhou S, Kwiecinski H, Fidzianska A, Plaster N, Fu YH, Ptacek LJ, Tawil R (2002) Functional and clinical characterization of KCNJ2 mutations associated with LQT7 (Andersen syndrome). J Clin Invest 110:381–388PubMedCentralPubMedCrossRefGoogle Scholar
  44. Vandenberg CA (1987) Inward rectification of a potassium channel in cardiac ventricular cells depends on internal magnesium ions. Proc Natl Acad Sci USA 84:2560–2564PubMedCentralPubMedCrossRefGoogle Scholar
  45. Whorton MR, MacKinnon R (2011) Crystal structure of the mammalian GIRK2 K+ channel and gating regulation by G proteins, PIP2, and sodium. Cell 147:199–208PubMedCentralPubMedCrossRefGoogle Scholar
  46. Wible BA, Taglialatela M, Ficker E, Brown AM (1994) Gating of inwardly rectifying K+ channels localized to a single negatively charged residue. Nature (Lond) 371:246–249CrossRefGoogle Scholar
  47. Woodhull AM (1973) Ionic blockage of sodium channels in nerve. J Gen Physiol 61:687–708PubMedCentralPubMedCrossRefGoogle Scholar
  48. Xie LH, John SA, Weiss JN (2002) Spermine block of the strong inward rectifier potassium channel Kir2.1: dual roles of surface charge screening and pore block. J Gen Physiol 120:53–66PubMedCentralPubMedCrossRefGoogle Scholar
  49. Xu Y, Shin HG, Szep S, Lu Z (2009) Physical determinants of strong voltage sensitivity of K(+) channel block. Nat Struct Mol Biol 16:1252–1258PubMedCentralPubMedCrossRefGoogle Scholar
  50. Yellen G (2002) The voltage-gated potassium channels and their relatives. Nature (Lond) 419:35–42CrossRefGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  1. 1.Department of Anesthesiology, Pharmacology, and TherapeuticsUniversity of British ColumbiaVancouverCanada

Personalised recommendations