Skip to main content

Understanding of Unique Thermal Phase Behavior of Room Temperature Ionic Liquids: 1-Butyl-3-Methylimdiazolium Hexafluorophosphate as a Great Example

  • Chapter
  • First Online:
Electronic Processes in Organic Electronics

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 209))

Abstract

Room temperature ionic liquids (RTILs) are salts that are liquid around room temperature. Because of their unique properties as liquid, they are considered to be “solvent of the future”, and potentially useful for electrolytes, environmental-friendly solvent, lubricant and so on. Applications of RTILs even cover the field of semiconductor. Some of their characteristics appear in thermal phase behavior, that is, they sometimes show premelting phenomenon, wide temperature range of supercooled liquid state and subsequently tendency to form glassy state, large thermal hysteresis and complex solid-solid phase transitions. 1-Butyl-3-methylimidazolium hexafluorophosphate is a representative RTIL with relatively simple ion structure. However, its thermal phase behavior is complicated and confusing. We built an apparatus for simultaneous measurements of Raman spectroscopy and calorimetry to provide conclusive results on thermal phase behavior and molecular structure of the RTIL. NMR spectroscopy is also carried out to probe molecular dynamics of both cation and anion in the crystalline states, the results of which are consistent with the simultaneous measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.S. Wilkes, Green Chem. 4, 73 (2002)

    Article  Google Scholar 

  2. B. Kirchner (ed.), Topics in Current Chemistry, 1st edn. (Springer-Verlag Berlin, Berlin, 2009)

    Google Scholar 

  3. I. Minami, Molecules 14, 2286 (2009)

    Article  Google Scholar 

  4. A. Kokorin (ed.), Ionic Liquids: Applications and Perspectives (InTech, Vienna, 2011)

    Google Scholar 

  5. P. Wasserscheid, T. Welton, Ionic Liquids in Synthesis (VCH-Wiley, Weinheim, 2003)

    Google Scholar 

  6. H. Ohno, Electrochemical Aspects of Ionic Liquids (Wiley-Interscience, Hoboken, 2005)

    Book  Google Scholar 

  7. M. Grätzel, J. Photochem. Photobiol. A 164(3) (2004)

    Google Scholar 

  8. F. Endres, ChemPhysChem 3, 144 (2002)

    Article  Google Scholar 

  9. M. Armand, F. Endres, D.R. MacFarlane, H. Ohno, B. Scrosati, Nat. Mater. 8, 621 (2009)

    Article  ADS  Google Scholar 

  10. J.D. Holbrey, W.M. Reichert, M. Nieuwenhuyzen, S. Johnston, K.R. Seddon, R.D. Rogers, Chem. Commun. 1636 (2003)

    Google Scholar 

  11. W.M. Reichert, J.D. Holbrey, K.B. Vigour, T.D. Morgan, G.A. Broker, R.D. Rogers, Chem. Commun. 4767 (2006)

    Google Scholar 

  12. I. Krossing, J.M. Slattery, C. Daguenet, P.J. Dyson, A. Oleinikova, H. Weingärtner, J. Am. Chem. Soc. 128, 13427 (2006)

    Article  Google Scholar 

  13. J.M. Pringle, P.C. Howlett, D.R. MacFarlane, M. Forsyth, J. Mater. Chem. 20, 2056 (2010)

    Article  Google Scholar 

  14. D.R. MacFarlane, M. Forsyth, Adv. Mater. 13, 957 (2001)

    Article  Google Scholar 

  15. H.A. Every, A.G. Bishop, D.R. MacFarlane, G. Orädd, M. Forsyth, J. Mater. Chem. 11, 3031 (2001)

    Article  Google Scholar 

  16. V. Tricoli, G. Orsini, M. Anselmi, Phys. Chem. Chem. Phys. 14, 10979 (2012)

    Article  Google Scholar 

  17. T. Endo, T. Kato, K. Tozaki, K. Nishikawa, J. Phys. Chem. B 114, 407 (2010)

    Article  Google Scholar 

  18. U. Domańska, A. Marciniak, J. Chem. Eng. Data 48, 451 (2003)

    Article  Google Scholar 

  19. A.R. Choudhury, N. Winterton, A. Steiner, A.I. Cooper, K.A. Johnson, J. Am. Chem. Soc. 127, 16792 (2005)

    Article  Google Scholar 

  20. J. Troncoso, C.A. Cerdeiriña, Y.A. Sanmamed, L. Romaní, L.P.N. Rebelo, J. Chem. Eng. Data 51, 1856 (2006)

    Article  Google Scholar 

  21. A. Triolo, A. Mandanici, O. Russina, V. Rodriguez-Mora, M. Cutroni, C. Hardacre, M. Nieuwenhuyzen, H.-J. Bleif, L. Keller, M.A. Ramos, J. Phys. Chem. B 110, 21357 (2006)

    Article  Google Scholar 

  22. S.M. Dibrov, J.K. Kochi, Acta Crystallogr. Sect. C C62, o19 (2006)

    Article  Google Scholar 

  23. D.M. Fox, W.H. Awad, J.W. Gilman, P.H. Maupin, H.C. De Long, P.C. Trulove, Green Chem. 5, 724 (2003)

    Article  Google Scholar 

  24. G.J. Kabo, A.V. Blokhin, Y.U. Paulechka, A.G. Kabo, M.P. Shymanovich, J.W. Magee, J. Chem. Eng. Data 49, 453 (2004)

    Article  Google Scholar 

  25. H. Jin, B. O’Hare, J. Dong, S. Arzhantsev, G.A. Baker, J.F. Wishart, A.J. Benesi, M. Maroncelli, J. Phys. Chem. B 112, 81 (2008)

    Article  Google Scholar 

  26. T. Endo, K. Tozaki, T. Masaki, K. Nishikawa, Jpn. J. Appl. Phys. 47, 1775 (2008)

    Article  ADS  Google Scholar 

  27. A. Kojima, C. Ishii, K. Tozaki, S. Matsuda, T. Nakayama, N. Tsuda, Y. Yoshimura, H. Iwasaki, Rev. Sci. Instrum. 68, 2301 (1997)

    Article  ADS  Google Scholar 

  28. K. Tozaki, H. Inaba, H. Hayashi, C. Quan, N. Nemoto, T. Kimura, Thermochim. Acta 397, 155 (2003)

    Article  Google Scholar 

  29. S. Wang, K. Tozaki, H. Hayashi, H. Inaba, J. Therm. Anal. Calorim. 79, 605 (2005)

    Article  Google Scholar 

  30. T. Endo, K. Nishikawa, Chem. Phys. Lett. 584, 79 (2013)

    Article  ADS  Google Scholar 

  31. S. Saouane, S.E. Norman, C. Hardacre, F.P.A. Fabbiani, Chem. Sci. 4, 1270 (2013)

    Article  Google Scholar 

  32. R. Ozawa, S. Hayashi, S. Saha, A. Kobayashi, H. Hamaguchi, Chem. Lett. 32, 948 (2003)

    Article  Google Scholar 

  33. S. Hayashi, R. Ozawa, H. Hamaguchi, Chem. Lett. 32, 498 (2003)

    Article  Google Scholar 

  34. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, L. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Gaussian, Inc., Wallingford CT (2004)

    Google Scholar 

  35. E.A. Turner, C.C. Pye, R.D. Singer, J. Phys. Chem. A 107, 2277 (2003)

    Article  Google Scholar 

  36. Y. Umebayashi, T. Fujimori, T. Sukizaki, M. Asada, K. Fujii, R. Kanzaki, S. Ishiguro, J. Phys. Chem. A 109, 8976 (2005)

    Article  Google Scholar 

  37. R.W. Berg, Monatsh. Chem. 138, 1045 (2007)

    Article  Google Scholar 

  38. Y.U. Paulechka, G.J. Kabo, A.V. Blokhin, A.S. Shaplov, E.I. Lozinskaya, D.G. Golovanov, K.A. Lyssenko, A.A. Korlyukov, Y.S. Vygodskii, J. Phys. Chem. B 113, 9538 (2009)

    Article  Google Scholar 

  39. S. Saha, S. Hayashi, A. Kobayashi, H. Hamaguchi, Chem. Lett. 32, 740 (2003)

    Article  Google Scholar 

  40. M. Nakakoshi, M. Shiro, T. Fujimoto, T. Machinami, H. Seki, M. Tashiro, K. Nishikawa, Chem. Lett. 35, 1400 (2006)

    Article  Google Scholar 

  41. C.S. Santos, S. Rivera-R, S. Dibrov, S. Baldelli, J. Phys. Chem. C 111, 7682 (2007)

    Article  Google Scholar 

  42. T. Endo, T. Kato, K. Nishikawa, J. Phys. Chem. B 114, 9201 (2010)

    Article  Google Scholar 

  43. T. Endo, T. Morita, K. Nishikawa, Chem. Phys. Lett. 517, 162 (2011)

    Article  ADS  Google Scholar 

  44. J.C. Lassègues, J. Grondin, R. Holomb, P. Johansson, J. Raman Spectrosc. 38, 551 (2007)

    Article  ADS  Google Scholar 

  45. J.H. Van Vleck, Phys. Rev. 74, 1168 (1948)

    Article  ADS  MATH  Google Scholar 

  46. T. Endo, H. Murata, M. Imanari, N. Mizushima, H. Seki, K. Nishikawa, J. Phys. Chem. B 116, 3780 (2012)

    Article  Google Scholar 

  47. N. Bloembergen, E.M. Purcell, R.V. Pound, Phys. Rev. 73, 679 (1948)

    Article  ADS  Google Scholar 

  48. A. Triolo, O. Russina, C. Hardacre, M. Nieuwenhuyzen, M.A. Gonzalez, H. Grimm, J. Phys. Chem. B 109, 22061 (2005)

    Article  Google Scholar 

  49. T. Endo, H. Murata, M. Imanari, N. Mizushima, H. Seki, S. Sen, K. Nishikawa, J. Phys. Chem. B 117, 326 (2013)

    Article  Google Scholar 

  50. T. Endo, S. Widgeon, P. Yu, S. Sen, K. Nishikawa, Phys. Rev. B 85, 054307/1 (2012)

    Article  ADS  Google Scholar 

  51. J. Dupont, P.A.Z. Suarez, Phys. Chem. Chem. Phys. 8, 2441 (2006)

    Article  Google Scholar 

  52. J.-Z. Yang, X.-M. Lu, J.-S. Gui, W.-G. Xu, Green Chem. 6, 541 (2004)

    Article  Google Scholar 

  53. J.H. Antony, D. Mertens, A. Dölle, P. Wasserscheid, W.R. Carper, ChemPhysChem 4, 588 (2003)

    Article  Google Scholar 

  54. W.R. Carper, P.G. Wahlbeck, A. Dölle, J. Phys. Chem. A 108, 6096 (2004)

    Article  Google Scholar 

  55. J.H. Antony, D. Mertens, T. Breitenstein, A. Dölle, P. Wasserscheid, W.R. Carper, Pure Appl. Chem. 76, 255 (2004)

    Article  Google Scholar 

  56. W.R. Carper, P.G. Wahlbeck, J.H. Antony, D. Mertens, A. Dölle, P. Wasserscheid, Anal. Bioanal. Chem. 378, 1548 (2004)

    Article  Google Scholar 

  57. A. Rivera, A. Brodin, A. Pugachev, E.A. Rössler, J. Chem. Phys. 126, 114503 (2007)

    Article  ADS  Google Scholar 

  58. N. Shamim, G.B. McKenna, J. Phys. Chem. B 114, 15742 (2010)

    Article  Google Scholar 

  59. W. Fan, Q. Zhou, J. Sun, S. Zhang, J. Chem. Eng. Data 54, 2307 (2009)

    Article  Google Scholar 

  60. H. Tokuda, K. Hayamizu, K. Ishii, M.A.B.H. Susan, M. Watanabe, J. Phys. Chem. B 108, 16593 (2004)

    Article  Google Scholar 

  61. W. Zhao, F. Leroy, B. Heggen, S. Zahn, B. Kirchner, S. Balasubramanian, F. Mueller-Plathe, J. Am. Chem. Soc. 131, 15825 (2009)

    Article  Google Scholar 

  62. T.I. Morrow, E.J. Maginn, J. Phys. Chem. B 106, 12807 (2002)

    Article  Google Scholar 

  63. D.F. Parsons, B.W. Ninham, J. Phys. Chem. A 113, 1141 (2009)

    Article  Google Scholar 

  64. H. Machida, R. Taguchi, Y. Sato, R.L. Smith Jr., Fluid Phase Equilib. 281, 127 (2009)

    Article  Google Scholar 

  65. G.R. Miller, H.S. Gutowsky, J. Chem. Phys. 39, 1983 (1963)

    Article  ADS  Google Scholar 

  66. H.S. Gutowsky, S. Albert, J. Chem. Phys. 58, 5446 (1973)

    Article  ADS  Google Scholar 

  67. G. Burbach, N. Weiden, A. Weiss, Z. Naturforsch. A Phys. Sci. 47a, 689 (1992)

    Google Scholar 

  68. K.J. Mallikarjunaiah, R. Damle, K.P. Ramesh, Solid State Nucl. Magn. Reson. 34, 180 (2008)

    Article  Google Scholar 

  69. R. Blinc, G. Lahajnar, J. Chem. Phys. 47, 4146 (1967)

    Article  ADS  Google Scholar 

  70. M. Makrocka-Rydzyk, S. Glowinkowski, S. Jurga, W.H. Meyer, Appl. Magn. Reson. 18, 63 (2000)

    Article  Google Scholar 

  71. R.D. Johnson, C.S. Yannoni, H.C. Dorn, J.R. Salem, D.S. Bethune, Science 255, 1235 (1992)

    Article  ADS  Google Scholar 

  72. J.D. Holbrey, K.R. Seddon, J. Chem. Soc. Dalton Trans. 2133 (1999)

    Google Scholar 

  73. P.A. Hunt, J. Phys. Chem. B 111, 4844 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiko Nishikawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Endo, T., Nishikawa, K. (2015). Understanding of Unique Thermal Phase Behavior of Room Temperature Ionic Liquids: 1-Butyl-3-Methylimdiazolium Hexafluorophosphate as a Great Example. In: Ishii, H., Kudo, K., Nakayama, T., Ueno, N. (eds) Electronic Processes in Organic Electronics. Springer Series in Materials Science, vol 209. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55206-2_17

Download citation

Publish with us

Policies and ethics