Skip to main content

Dyneema®: Super Fiber Produced by the Gel Spinning of a Flexible Polymer

  • Chapter
  • First Online:

Abstract

Dyneema® is the ultrahigh molecular weight polyethylene (UHMWPE) fiber showing the higher tensile strength than that of aramid fibers. In addition to the extremely high tensile properties, the fiber shows other unique characteristics, for example, lightweight, chemical stability, shock absorption, negative thermal expansion, etc., and its application area has been widely spread by the long-continued efforts of TOYOBO company and DSM company from the late 1980s.

The UHMWPE fibers are manufactured by a unique spinning technology, i.e., gel-spinning method, invented by researchers in DSM in the early 1980s, and this method can be defined as an innovation leading to the industrialization of the super fiber made of flexible chain polymers. In this chapter, the essence of the gel-spinning technology, the structure evolution in the spinning and the drawing process, fiber properties, and applications of Dyneema® are presented. Especially, the reasons, why we can achieve the superior mechanical properties of the UHMWPE fibers with the gel-spinning method, are described by focusing on the microstructures of the fibers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. P. Smith, P.J. Lemstra, A.J. Pennings, N.L. Patent, 177,840, 1979

    Google Scholar 

  2. P.J. Lemstra, N.L. Patent, 8,500,428, 1985

    Google Scholar 

  3. Y. Teramoto, WEB J. 89, 31 (2007)

    Google Scholar 

  4. M. Matsuo, K. Inoue, N. Abumiya, Sen’i Gakkaishi(J) 40, 275 (1984)

    Article  Google Scholar 

  5. T. Itoh, Kouseinou Koubunnshikei Fukugouzairyou, (Maruzen, 1990), p. 7

    Google Scholar 

  6. H.F. Mark, Polymer Science and Materials (Wiley-Interscience, New York, 1971), p. 236

    Google Scholar 

  7. R. Hosemann, Polymer 3, 349 (1962)

    Article  Google Scholar 

  8. P.J. Lemstra, N.A.J.M. van Aerle, C.W. Bastiaansen, Polym. J. 19, 85 (1987)

    Article  Google Scholar 

  9. K.D. Yangu, K. Shierudon, P.S. Dasan, J.P. Patent 1,904,029, 1984. M. Mizuno, H. Tanaka, F. Ueda, J.P. patent 2,113,964, 1986. H. Sano, J.P. Patent 1,973,830, 1987

    Google Scholar 

  10. H. Narukawa, H. Noguchi, Sen’i Gakkaishi(J) 38, 466 (1990)

    Article  Google Scholar 

  11. F. Okada, T. Ohta, J.P. Patent 1,617,837, 1989

    Google Scholar 

  12. P. Smith, P.J. Lemstra, H.C. Booij, J. Polym. Sci. Phys. Educ. 19, 877 (1981)

    Article  Google Scholar 

  13. P.G. de Gennes, Scaling Concepts in Polymer Physics (Cornel University Press, New York, 1979)

    Google Scholar 

  14. C.W.M. Bastiaansen, J. Polym. Sci. B, Polym. Phys. 28, 1475 (1990)

    Article  Google Scholar 

  15. Y. Ohta, H. Murase, H. Sugiyama, H. Yasuda, Polym. Eng. Sci. 40, 2414 (2000)

    Article  Google Scholar 

  16. I.M. Ward (ed.), Development in Oriented Polymer-2 (Elsevier Applied Science Publishers, New York, 1987), p. 39

    Google Scholar 

  17. W.W. Graessley, J. Chem. Phys. 54, 5143 (1971)

    Article  Google Scholar 

  18. M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, Clarendon, 1986)

    Google Scholar 

  19. S. Mitsuhashi, Bull. Text. Res. Inst. (J) 66, 1–9 (1964)

    Google Scholar 

  20. A.J. Pennings, A.M. Kiel, Kolloid Z. Z. Polym. 205, 160 (1965)

    Article  Google Scholar 

  21. M.J. Hill, A.J. Keller, J. Macromol. Sci. Phys. B3, 1531 (1969)

    Google Scholar 

  22. A.J. Keller, M.J. Machin, J. Macromol. Sci. Phys. B1, 41 (1967)

    Article  Google Scholar 

  23. A. Zwijnenburg, A.J. Pennings, Coll. Polym. Sci. 254, 686 (1976)

    Article  Google Scholar 

  24. J.C.M. Torfs, A.J. Pennings, J. Appl. Polym. Sci. 26, 303 (1981)

    Article  Google Scholar 

  25. M. Seki, D.W. Thurmana, J.P. Pberhauser, J. Kornfield, Macromolecules 35, 2583 (2002)

    Article  Google Scholar 

  26. H. Murase, T. Kume, T. Hashimoto, Y. Ohta, Macromolecules 38, 6656 (2005)

    Article  Google Scholar 

  27. H. Murase, T. Kume, T. Hashimoto, Y. Ohta, Macromolecules 38, 8719 (2005)

    Article  Google Scholar 

  28. T. Hashimoto, H. Murase, Y. Ohta, Macromolecules 43, 542 (2010)

    Article  Google Scholar 

  29. H. Murase, Y. Ohta, T. Hashimoto, Macromolecules 44, 7335 (2011)

    Article  Google Scholar 

  30. E. Helfand, G.H. Fredrickson, Phys. Rev. Lett. 62, 2468 (1989)

    Article  Google Scholar 

  31. A. Onuki, Phys. Rev. Lett. 62, 2472 (1989). J. Phys., Condens. Matter, 9, 6119(1997)

    Article  Google Scholar 

  32. M. Doi, A. Onuki, J. Phys. II France 2, 1631 (1992)

    Article  Google Scholar 

  33. S.T. Milner, Phys. Rev. E 48, 3674 (1993)

    Article  Google Scholar 

  34. Y. Ohta, H. Murase, T. Hashimoto, J. Polym. Sci. Polym. Phys. Educ. 43, 2639 (2005)

    Article  Google Scholar 

  35. Y. Ohta, H. Murase, T. Hashimoto, J. Polym. Sci. Polym. Phys. Educ. 48, 1861 (2010)

    Article  Google Scholar 

  36. http://www.toyobo-global.com/seihin/dn/dyneema

  37. B. Dessain, O. Moulaert, R. Keunings, A.R. Bunsell, J. Mater. Sci. 27, 4515 (1992)

    Article  Google Scholar 

  38. A. Yamanaka, T. Takao, Sen’i Gakkaishi(J) 68, 111 (2012)

    Google Scholar 

  39. M.A. Wilding, I.M. Ward, Polymer 19, 969 (1978)

    Article  Google Scholar 

  40. M.A. Wilding, I.M. Ward, Polymer 22, 870 (1981)

    Article  Google Scholar 

  41. Y. Ohta, H. Sugiyama, H. Yasuda, J. Polym. Sci. Polym. Phys. Ed. 32, 261 (1994)

    Article  Google Scholar 

  42. I.M. Ward, M.A. Wilding, J. Polym. Sci. Polym. Phys. Ed. 22, 561 (1984)

    Article  Google Scholar 

  43. N. Sekine, S. Tada, T. Higuchi, T. Takao, A. Yamanaka, S. Fukui, IEEE Trans. On Appl. Super. 13, 1161 (2004)

    Article  Google Scholar 

  44. T. Maeda, Sen’i Gakkaishi(J) 68, 184 (2012)

    Article  Google Scholar 

  45. http://www.toyobo-global.com/seihin/dn/dyneema/youto/textile.htm

  46. S. Nishijima, J. Saito, Y. Nakayama, Y. Ogo, J.P. Patent 4,139,341, 2005

    Google Scholar 

  47. B.P. Rotzinger, H.D. Chanzy, P. Smith, Polymer 60, 1814 (1989)

    Article  Google Scholar 

  48. T. Kanamoto, A. Tsuruta, K. Tanaka, M. Takeda, R.S. Porter, Macromolecules 21, 470 (1988)

    Article  Google Scholar 

  49. K. Kageyama, J. Tamazawa, T. Aida, Science 285, 2113 (1999)

    Article  Google Scholar 

  50. Y. Zhibin, F. Wei, Z. Shiping, Y. Qiang, Macromol. Rapid Commun. 27, 1217 (2006)

    Article  Google Scholar 

  51. H. Fujimatsu, J.P. Patent 2007-056388, 2007

    Google Scholar 

  52. S. Ruan, P. Gao, T.X. Yu, Polymer 47, 1604 (2006)

    Article  Google Scholar 

  53. X. Chen, K. Yoon, C. Burger, I. Sics, D. Fang, B.S. Hsiao, B. Chu, Macromolecules 38, 3883 (2005)

    Article  Google Scholar 

  54. T. Yoshioka, R. Dersch, M. Tsuji, A.K. Schaper, J. Polym. Sci. 48, 1574 (2010)

    Article  Google Scholar 

  55. Z. Bartczak, Macromolecules 38, 7702 (2005)

    Article  Google Scholar 

  56. M. Garcia-Leiner, J. Song, A.J. Lesser, J. Polym. Sci. 41, 1375 (2003)

    Article  Google Scholar 

  57. http://www.toyobo-global.com/news/2008/release_406.html

  58. http://www.teijinendumax.com/products/products/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasunori Fukushima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Fukushima, Y., Murase, H., Ohta, Y. (2016). Dyneema®: Super Fiber Produced by the Gel Spinning of a Flexible Polymer. In: The Society of Fiber Science and Techno, J. (eds) High-Performance and Specialty Fibers. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55203-1_7

Download citation

Publish with us

Policies and ethics