Skip to main content
Book cover

Amebiasis pp 373–391Cite as

Structural Biology of Cysteine Biosynthetic Pathway Enzymes

  • Chapter
  • First Online:

Abstract

The cysteine biosynthetic pathway is of central importance for the growth, survival, and pathogenicity of the anaerobic protozoan parasite Entamoeba histolytica. This pathway is present across all species but is absent in mammals. Cysteine, the product of this pathway, is the only antioxidative thiol responsible for fighting oxidative stress in E. histolytica. Serine acetyl transferase (SAT) and O-acetyl serine sulfhydrylase (OASS) are the two enzymes catalyzing the de novo cysteine biosynthetic pathway. In all organisms in which so far this pathway is known to exist, both these enzymes associate to form a regulatory complex, but in E. histolytica this complex is not formed. The cysteine biosynthetic pathway has been optimized in this organism to adapt to and fulfill its cysteine requirements. Here we describe recent studies of the structure, function, and complex formation of cysteine biosynthetic enzymes in E. histolytica. The findings reveal subtle modifications that lend both cysteine biosynthetic enzymes their unique characteristics to escape inhibitory regulation; allowing E. histolytica to maintain high levels of cysteine at all times.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Beinert H (2000) A tribute to sulfur. Eur J Biochem 267:5657–5664

    Article  CAS  PubMed  Google Scholar 

  2. Kessler D (2006) Enzymatic activation of sulfur for incorporation into biomolecules in prokaryotes. FEMS Microbiol Rev 30:825–840

    Article  CAS  PubMed  Google Scholar 

  3. Fahey RC, Newton GL, Arrick B, Overdank-Bogart T, Aley SB (1984) Entamoeba histolytica: a eukaryote without glutathione metabolism. Science 224:70–72

    Article  CAS  PubMed  Google Scholar 

  4. Nozaki T, Asai T, Sanchez LB, Kobayashi S, Nakazawa M, Takeuchi T (1999) Characterization of the gene encoding serine acetyltransferase, a regulated enzyme of cysteine biosynthesis from the protist parasites Entamoeba histolytica and Entamoeba dispar. Regulation and possible function of the cysteine biosynthetic pathway in Entamoeba. J Biol Chem 274:32445–32452

    Article  CAS  PubMed  Google Scholar 

  5. Husain A, Jeelani G, Sato D, Nozaki T (2011) Global analysis of gene expression in response to l-cysteine deprivation in the anaerobic protozoan parasite Entamoeba histolytica. BMC Genomics 12:275

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Husain A, Sato D, Jeelani G, Mi-ichi F, Ali V, Suematsu M et al (2010) Metabolome analysis revealed increase in S-methylcysteine and phosphatidylisopropanolamine synthesis upon l-cysteine deprivation in the anaerobic protozoan parasite Entamoeba histolytica. J Biol Chem 285:39160–39170

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Droux M, Ruffet ML, Douce R, Job D (1998) Interactions between serine acetyltransferase and O-acetylserine (thiol) lyase in higher plants: structural and kinetic properties of the free and bound enzymes. Eur J Biochem 255:235–245

    Article  CAS  PubMed  Google Scholar 

  8. Kumar S, Raj I, Nagpal I, Subbarao N, Gourinath S (2011) Structural and biochemical studies of serine acetyltransferase reveal why the parasite Entamoeba histolytica cannot form a cysteine synthase complex. J Biol Chem 286:12533–12541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Nozaki T, Asai T, Kobayashi S, Ikegami F, Noji M, Saito K et al (1998) Molecular cloning and characterization of the genes encoding two isoforms of cysteine synthase in the enteric protozoan parasite Entamoeba histolytica. Mol Biochem Parasitol 97:33–44

    Article  CAS  PubMed  Google Scholar 

  10. Hussain S, Ali V, Jeelani G, Nozaki T (2009) Isoform-dependent feedback regulation of serine O-acetyltransferase isoenzymes involved in l-cysteine biosynthesis of Entamoeba histolytica. Mol Biochem Parasitol 163:39–47

    Article  CAS  PubMed  Google Scholar 

  11. Hindson VJ (2003) Serine acetyltransferase of Escherichia coli: substrate specificity and feedback control by cysteine. Biochem J 375:745–752

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Johnson CM, Huang B, Roderick SL, Cook PF (2004) Kinetic mechanism of the serine acetyltransferase from Haemophilus influenzae. Arch Biochem Biophys 429:115–122

    Article  CAS  PubMed  Google Scholar 

  13. Raetz CR, Roderick SL (1995) A left-handed parallel beta helix in the structure of UDP-N-acetylglucosamine acyltransferase. Science 270:997–1000

    Article  CAS  PubMed  Google Scholar 

  14. Hindson VJ, Moody PC, Rowe AJ, Shaw WV (2000) Serine acetyltransferase from Escherichia coli is a dimer of trimers. J Biol Chem 275:461–466

    Article  CAS  PubMed  Google Scholar 

  15. Pye VE, Tingey AP, Robson RL, Moody PC (2004) The structure and mechanism of serine acetyltransferase from Escherichia coli. J Biol Chem 279:40729–40736

    Article  CAS  PubMed  Google Scholar 

  16. Olsen LR, Huang B, Vetting MW, Roderick SL (2004) Structure of serine acetyltransferase in complexes with CoA and its cysteine feedback inhibitor. Biochemistry 43:6013–6019

    Article  CAS  PubMed  Google Scholar 

  17. Kumar S, Mazumder M, Dharavath S, Gourinath S (2013) Single residue mutation in active site of serine acetyltransferase isoform 3 from Entamoeba histolytica assists in partial regaining of feedback inhibition by cysteine. PLoS One 8(2):e55932

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Takagi H, Kobayashi C, Kobayashi S, Nakamori S (1999) PCR random mutagenesis into Escherichia coli serine acetyltransferase: isolation of the mutant enzymes that cause overproduction of l-cysteine and l-cystine due to the desensitization to feedback inhibition. FEBS Lett 452:323–327

    Article  CAS  PubMed  Google Scholar 

  19. Inoue K, Noji M, Saito K (1999) Determination of the sites required for the allosteric inhibition of serine acetyltransferase by l-cysteine in plants. Eur J Biochem 266:220–227

    Article  CAS  PubMed  Google Scholar 

  20. Na G, Salt DE (2011) Differential regulation of serine acetyltransferase is involved in nickel hyperaccumulation in Thlaspi goesingense. J Biol Chem 286:40423–40432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Ali V, Nozaki T (2007) Current therapeutics, their problems, and sulfur-containing-amino-acid metabolism as a novel target against infections by “amitochondriate” protozoan parasites. Clin Microbiol Rev 20:164–187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Tai CH, Nalabolu SR, Jacobson TM, Minter DE, Cook PF (1993) Kinetic mechanisms of the A and B isozymes of O-acetylserine sulfhydrylase from Salmonella typhimurium LT-2 using the natural and alternative reactants. Biochemistry 32:6433–6442

    Article  CAS  PubMed  Google Scholar 

  23. Chattopadhyay A, Meier M, Ivaninskii S, Burkhard P, Speroni F, Campanini B et al (2007) Structure, mechanism, and conformational dynamics of O-acetylserine sulfhydrylase from Salmonella typhimurium: comparison of A and B isozymes. Biochemistry 46:8315–8330

    Article  CAS  PubMed  Google Scholar 

  24. Chinthalapudi K, Kumar M, Kumar S, Jain S, Alam N, Gourinath S (2008) Crystal structure of native O-acetyl-serine sulfhydrylase from Entamoeba histolytica and its complex with cysteine: structural evidence for cysteine binding and lack of interactions with serine acetyl transferase. Proteins 72:1222–1232

    Article  CAS  PubMed  Google Scholar 

  25. Raj I, Kumar S, Gourinath S (2012) The narrow active-site cleft of O-acetylserine sulfhydrylase from Leishmania donovani allows complex formation with serine acetyltransferases with a range of C-terminal sequences. Acta Crystallogr D 68:909–919

    Article  CAS  PubMed  Google Scholar 

  26. Raj I, Mazumder M, Gourinath S (2013) Molecular basis of ligand recognition by OASS from E. histolytica: insights from structural and molecular dynamics simulation studies. Biochim Biophys Acta 1830:4573–4583

    Article  CAS  PubMed  Google Scholar 

  27. Francois JA, Kumaran S, Jez JM (2006) Structural basis for interaction of O-acetylserine sulfhydrylase and serine acetyltransferase in the Arabidopsis cysteine synthase complex. Plant Cell 18:3647–3655

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Kredich NM, Becker MA, Tomkins GM (1969) Purification and characterization of cysteine synthetase, a bifunctional protein complex, from Salmonella typhimurium. J Biol Chem 244:2428–2439

    CAS  PubMed  Google Scholar 

  29. Saito K, Yokoyama H, Noji M, Murakoshi I (1995) Molecular cloning and characterization of a plant serine acetyltransferase playing a regulatory role in cysteine biosynthesis from watermelon. J Biol Chem 270:16321–16326

    Article  CAS  PubMed  Google Scholar 

  30. Hell R, Hillebrand H (2001) Plant concepts for mineral acquisition and allocation. Curr Opin Biotechnol 12:161–168

    Article  CAS  PubMed  Google Scholar 

  31. Huang B, Vetting MW, Roderick SL (2005) The active site of O-acetylserine sulfhydrylase is the anchor point for bienzyme complex formation with serine acetyltransferase. J Bacteriol 187:3201–3205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Kumaran S, Yi H, Krishnan HB, Jez JM (2009) Assembly of the cysteine synthase complex and the regulatory role of protein–protein interactions. J Biol Chem 284:10268–10275

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Gorman J, Shapiro L (2004) Structure of serine acetyltransferase from Haemophilus influenzae Rd. Acta Crystallogr D Biol Crystallogr 60:1600–1605

    Article  PubMed  Google Scholar 

  34. Bogdanova N, Hell R (1997) Cysteine synthesis in plants: protein–protein interactions of serine acetyltransferase from Arabidopsis thaliana. Plant J 11:251–262

    Article  CAS  PubMed  Google Scholar 

  35. Mino K, Yamanoue T, Sakiyama T, Eisaki N, Matsuyama A, Nakanishi K (1999) Purification and characterization of serine acetyltransferase from Escherichia coli partially truncated at the C-terminal region. Biosci Biotechnol Biochem 63:168–179

    Article  CAS  PubMed  Google Scholar 

  36. Mino K, Hiraoka K, Imamura K, Sakiyama T, Eisaki N, Matsuyama A et al (2000) Characteristics of serine acetyltransferase from Escherichia coli deleting different lengths of amino acid residues from the C-terminus. Biosci Biotechnol Biochem 64:1874–1880

    Article  CAS  PubMed  Google Scholar 

  37. Wirtz M, Berkowitz O, Droux M, Hell R (2001) The cysteine synthase complex from plants. Mitochondrial serine acetyltransferase from Arabidopsis thaliana carries a bifunctional domain for catalysis and protein–protein interaction. Eur J Biochem 268:686–693

    Article  CAS  PubMed  Google Scholar 

  38. Berkowitz O, Wirtz M, Wolf A, Kuhlmann J, Hell R (2002) Use of biomolecular interaction analysis to elucidate the regulatory mechanism of the cysteine synthase complex from Arabidopsis thaliana. J Biol Chem 277:30629–30634

    Article  CAS  PubMed  Google Scholar 

  39. Bonner ER, Cahoon RE, Knapke SM, Jez JM (2005) Molecular basis of cysteine biosynthesis in plants: structural and functional analysis of O-acetylserine sulfhydrylase from Arabidopsis thaliana. J Biol Chem 280:38803–38813

    Article  CAS  PubMed  Google Scholar 

  40. Campanini B, Speroni F, Salsi E, Cook PF, Roderick SL, Huang B et al (2005) Interaction of serine acetyltransferase with O-acetylserine sulfhydrylase active site: evidence from fluorescence spectroscopy. Protein Sci 14:2115–2124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Zhao C, Moriga Y, Feng B, Kumada Y, Imanaka H, Imamura K et al (2006) On the interaction site of serine acetyltransferase in the cysteine synthase complex from Escherichia coli. Biochem Biophys Res Commun 341:911–916

    Article  CAS  PubMed  Google Scholar 

  42. Feldman-Salit A, Wirtz M, Hell R, Wade RC (2009) A mechanistic model of the cysteine synthase complex. J Mol Biol 386:37–59

    Article  CAS  PubMed  Google Scholar 

  43. Wang T, Leyh TS (2012) Three-stage assembly of the cysteine synthase complex from Escherichia coli. J Biol Chem 287:4360–4367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Gourinath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Raj, I., Kumar, S., Mazumder, M., Gourinath, S. (2015). Structural Biology of Cysteine Biosynthetic Pathway Enzymes. In: Nozaki, T., Bhattacharya, A. (eds) Amebiasis. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55200-0_21

Download citation

Publish with us

Policies and ethics