Skip to main content

The Biology of Retrotransposition in Entamoeba histolytica

  • Chapter
  • First Online:
Amebiasis

Abstract

Retrotransposons move into nonhomologous insertion sites within the genome via an RNA intermediate that is reverse transcribed into DNA. Those that lack long terminal repeats include long and short interspersed nuclear elements (LINEs and SINEs). LINEs are autonomous; partner SINEs retrotranspose using the LINE machinery. Entamoeba histolytica contains three classes of LINEs (EhLINE1, 2, 3) and SINEs (EhSINE1, 2, 3), which constitute approximately 11 % of the genome. EhLINE1 (4.8 kb) and EhSINE1 (550 bp) are the most abundant. They insert at AT-rich sites on all chromosomes, are not telomeric, and are close to protein-coding genes.

EhLINEs typically encode two open reading frames (ORFs). The N-terminal one-third of EhLINE1 contains ORF1, which has nucleic acid-binding properties. The ORF2 contains the reverse transcriptase (RT) domain and the endonuclease (EN) domain, which resembles type IIS restriction endonucleases. The purified EN domain protein could nick pBluescript DNA, and lacked strict sequence specificity. It displayed low K m, suggesting high affinity for DNA, and a low turnover number that could limit retrotransposition. Although EhLINE1 ORF1p is expressed in cultured E. histolytica cells, ORF2p is not detected. A cell line was obtained that expressed ORF2p by tetracycline induction and also contained an EhSINE1 copy marked with a GC-rich tag. In the presence of tetracycline, mobilization of the marked EhSINE1 was observed. Interestingly, mobilized EhSINE1 copies engaged in active sequence exchange during retrotransposition, probably brought about by multiple template jumping of RT, leading to rapid spread of sequence tag to the EhSINE1 population and generation of diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Craig N (2002) An introduction. In: Craig N, Craigie R, Gellert M, Lambowitz A (eds) Mobile DNA II. American Society for Microbiology, Washington, DC, pp 3–10

    Google Scholar 

  2. Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8(12):973–982

    Article  CAS  PubMed  Google Scholar 

  3. Lopez-Flores I, Garrido-Ramos MA (2010) The repetitive DNA content of eukaryotic genomes. Genome Dyn 7:1–28. doi:10.1159/000337118

    Article  Google Scholar 

  4. Deininger PL, Moran JV, Batzer MA, Kazazian HH Jr (2003) Mobile elements and mammalian genome evolution. Curr Opin Genet Dev 13:651–658

    Article  CAS  PubMed  Google Scholar 

  5. Lippman Z, Gendrel AV, Black M, Vaughn MW, Dedhia N, McCombie WR, Lavine K, Mittal V, May B, Kasschau KD, Carrington JC, Doerge RW, Colot V, Martienssen R (2004) Role of transposable elements in heterochromatin and epigenetic control. Nature (Lond) 430(6998):471–476

    Article  CAS  Google Scholar 

  6. Rebollo R, Karimi MM, Bilenky M, Gagnier L, Miceli-Royer K, Zhang Y, Goyal P, Keane TM, Jones S, Hirst M, Lorincz MC, Mager DL (2011) Retrotransposon-induced heterochromatin spreading in the mouse revealed by insertional polymorphisms. PLoS Genet 7(9):e1002301. doi:10.1371/journal.pgen.1002301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Chenais B, Caruso A, Hiard S, Casse N (2012) The impact of transposable elements on eukaryotic genomes: from genome size increase to genetic adaptation to stressful environments. Gene (Amst) 509(1):7–15. doi:10.1016/j.gene.2012.07.042

    Article  CAS  Google Scholar 

  8. Bhattacharya S, Bakre A, Bhattacharya A (2002) Mobile genetic elements in protozoan parasites. J Genet 81:73–86

    Article  CAS  PubMed  Google Scholar 

  9. Wickstead B, Ersfeld K, Gull K (2003) Repetitive elements in genomes of parasitic protozoa. Microbiol Mol Biol Rev 67:360–375

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Carlton JM, Hirt RP, Silva JC et al (2007) Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science 315:207–212

    Article  PubMed Central  PubMed  Google Scholar 

  11. Bringaud F, Muller M, Cerqueira GC, Smith M, Rochette A, El-Sayed NM, Papadopoulou B, Ghedin E (2007) Members of a large retroposon family are determinants of post-transcriptional gene expression in Leishmania. PLoS Pathog 3:1291–1307

    Article  CAS  PubMed  Google Scholar 

  12. Smith M, Bringaud F, Papadopoulou B (2009) Organization and evolution of two SIDER retroposon subfamilies and their impact on the Leishmania genome. BMC Genomics 10:240

    Article  PubMed Central  PubMed  Google Scholar 

  13. Roy SW, Penny D (2007) Widespread intron loss suggests retrotransposon activity in ancient apicomplexans. Mol Biol Evol 24:1926–1933

    Article  CAS  PubMed  Google Scholar 

  14. Pritham EJ, Putliwala T, Feschotte C (2007) Mavericks, a novel class of giant transposable elements widespread in eukaryotes and related to DNA viruses. Gene (Amst) 390:3–17

    Article  CAS  Google Scholar 

  15. Lopes FR, Silva JC, Benchimol M, Costa GGL, Pereira GAG, Carareto CMA (2009) The protist Trichomonas vaginalis harbors multiple lineages of transcriptionally active Mutator-like elements. BMC Genomics 10:330. doi:10.1186/1471-2164-10-330

  16. Thomas MC, Macias F, Alonso C, Lopez MC (2010) The biology and evolution of transposable elements in parasites. Trends Parasitol 7:350–362

    Article  Google Scholar 

  17. Olivares M, Alonso C, Lopez MC (1997) The open reading frame 1 of the L1Tc retrotransposon of Trypanosoma cruzi codes for a protein with apurinic-apyrimidinic nuclease activity. J Biol Chem 272:25224–25228

    Article  CAS  PubMed  Google Scholar 

  18. Garcia-Perez JL, Gonzalez CI, Thomas MC, Olivares M, Lopez MC (2003) Characterization of reverse transcriptase activity of the L1Tc retroelement from Trypanosoma cruzi. Cell Mol Life Sci 60:2692–2701

    Article  CAS  PubMed  Google Scholar 

  19. Olivares M, Garcia-Perez JL, Thomas MC, Heras SR, Lopez MC (2002) The non-LTR (long terminal repeat) retrotransposon L1Tc from Trypanosoma cruzi codes for a protein with RNase H activity. J Biol Chem 277(31):28025–28030

    Article  CAS  PubMed  Google Scholar 

  20. Heras SR, Thomas MC, Macias F, Patarroyo ME, Alonso C, Lopez MC (2009) Nucleic-acid-binding properties of the C2-L1Tc nucleic acid chaperone encoded by L1Tc retrotransposon. Biochem J 424(3):479–490. doi:10.1042/BJ20090766

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Sanchez-Luque F, Lopez MC, Macias F, Alonso C, Thomas MC (2012) Pr77 and L1TcRz: a dual system within the 5′-end of L1Tc retrotransposon, internal promoter and HDV-like ribozyme. Mob Genet Elements 2(1):1–7. doi:10.4161/mge.19233

    Article  PubMed Central  PubMed  Google Scholar 

  22. Sharma R, Bagchi A, Bhattacharya A, Bhattacharya S (2001) Characterization of a retrotransposon-like element from Entamoeba histolytica. Mol Biochem Parasitol 116:45–53

    Article  CAS  PubMed  Google Scholar 

  23. Bakre AA, Rawal K, Ramaswamy R, Bhattacharya A, Bhattacharya S (2005) The LINEs and SINEs of Entamoeba histolytica: comparative analysis and genomic distribution. Exp Parasitol 110:207–213

    Article  CAS  PubMed  Google Scholar 

  24. Van Dellen K, Field J, Wang Z, Loftus B, Samuelson J (2002) LINEs and SINE-like elements of the protist Entamoeba histolytica. Gene (Amst) 297:229–239

    Article  Google Scholar 

  25. Shire AM, Ackers JP (2007) SINE elements of Entamoeba dispar. Mol Biochem Parasitol 152(1):47–52. doi:10.1016/j.molbiopara.2006.11.010

    Article  CAS  PubMed  Google Scholar 

  26. Huntley DM, Pandis I, Butcher SA, Ackers JP (2010) Bioinformatic analysis of Entamoeba histolytica SINE1 elements. BMC Genomics 11:321. doi:10.1186/1471-2164-11-321

    Article  PubMed Central  PubMed  Google Scholar 

  27. Willhoeft U, Buss H, Tannich E (1999) Analysis of cDNA expressed sequence tags from Entamoeba histolytica: identification of two highly abundant polyadenylated transcripts with no overt open reading frames. Protist 150:61–70

    Article  CAS  PubMed  Google Scholar 

  28. Pritham EJ, Feschotte C, Wessler SR (2005) Unexpected diversity and differential success of DNA transposon in four species of Entamoeba protozoans. Mol Biol Evol 22:1751–1763

    Article  CAS  PubMed  Google Scholar 

  29. Lorenzi H, Thiagarajan M, Haas B, Wortman J, Hall N, Caler E (2008) Genome wide survey, discovery and evolution of repetitive elements in three Entamoeba species. BMC Genomics 9:595

    Article  PubMed Central  PubMed  Google Scholar 

  30. Cruz-Reyes J, Ur-Rehman T, Spice WM, Ackers JP (1995) A novel transcribed repeat element from Entamoeba histolytica. Gene (Amst) 166:183–184

    Article  CAS  Google Scholar 

  31. Willhoeft U, Buss H, Tannich E (2002) The abundant polyadenylated transcript 2 DNA sequence of the pathogenic protozoan parasite Entamoeba histolytica represents a nonautonomous non-long-terminal-repeat retrotransposon-like element which is absent in the closely related nonpathogenic species Entamoeba dispar. Infect Immun 70(12):6798–6804

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Bagchi A, Bhattacharya A, Bhattacharya S (1999) Lack of a chromosomal copy of the circular rDNA plasmid of Entamoeba histolytica. Int J Parasitol 29:1775–1783

    Article  CAS  PubMed  Google Scholar 

  33. Mandal PK, Rawal K, Ramaswamy R, Bhattacharya A, Bhattacharya S (2006) Identification of insertion hot spots for non-LTR retrotransposons: computational and biochemical application to Entamoeba histolytica. Nucleic Acids Res 34:5752–5763

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Gilchrist CA, Houpt E, Trapaidze N, Fei Z, Crasta O, Asgharpour A, Evans C, Martino-Catt S, Baba DJ, Stroup S, Hamano S, Ehrenkaufer G, Okada M, Singh U, Nozaki T, Mann BJ, Petri WA Jr (2006) Impact of intestinal colonization and invasion on the Entamoeba histolytica transcriptome. Mol Biochem Parasitol 147(2):163–176

    Article  CAS  PubMed  Google Scholar 

  35. Lorenzi HA, Puiu D, Miller JR, Brinkac LM, Amedeo P, Hall N, Caler EV (2010) New assembly, reannotation and analysis of the Entamoeba histolytica genome reveal new genomic features and protein content information. PLoS Negl Trop Dis 4(6):e716. doi:10.1371/journal.pntd.0000716

    Article  PubMed Central  PubMed  Google Scholar 

  36. Shilova VY, Garbuz DG, Myasyankina EN, Chen B, Evgen’ev MB, Feder ME, Zatsepina OG (2006) Remarkable site specificity of local transposition into the Hsp70 promoter of Drosophila melanogaster. Genetics 173(2):809–820

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Kumari V, Sharma R, Yadav VP, Gupta AK, Bhattacharya A, Bhattacharya S (2011) Differential distribution of a SINE element in the Entamoeba histolytica and Entamoeba dispar genomes: role of the LINE-encoded endonuclease. BMC Genomics 12:267. doi:10.1186/1471-2164-12-267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Martin SL (1991) Ribonucleoprotein particles with LINE-1 RNA in mouse embryonal carcinoma cells. Mol Cell Biol 11:4804–4807

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Yang J, Malik HS, Eickbush TH (1999) Identification of the endonuclease domain encoded by R2 and other site-specific, non-long terminal repeat retrotransposable elements. Proc Natl Acad Sci USA 96:7847–7852

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Hohjoh H, Singer MF (1996) Cytoplasmic ribonucleoprotein complexes containing human LINE-1 protein and RNA. EMBO J 15:630–639

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Khazina E, Weichenrieder O (2009) Non-LTR retrotransposons encode noncanonical RRM domains in their first open reading frame. Proc Natl Acad Sci USA 106:731–736

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Moran JV, Holmes SE, Naas TP, DeBerardinis RJ, Boeke JD, Kazazian HH Jr (1996) High frequency retrotransposition in cultured mammalian cells. Cell 87:917–927

    Article  CAS  PubMed  Google Scholar 

  43. Kolosha VO, Martin SL (1997) In vitro properties of the first ORF protein from mouse LINE-1 support its role in ribonucleoprotein particle formation during retrotransposition. Proc Natl Acad Sci USA 94:10155–10160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Malik HS, Burke WD, Eickbush TH (1999) The age and evolution of non-LTR retrotransposable elements. Mol Biol Evol 16:793–805

    Article  CAS  PubMed  Google Scholar 

  45. Ivanov VA, Mel’nikov AA, Siunov AV, Fodor II, Il’in IV (1991) The jockey mobile genetic element codes a DNA polymerase similar to retroviral reverse transcriptase. Dokl Akad Nauk SSSR 320(2):473–476

    CAS  PubMed  Google Scholar 

  46. Mathias SL, Scott AF, Kazazian HH Jr, Boeke JD, Gabriel A (1991) Reverse transcriptase encoded by a human transposable element. Science 254:1808–1810

    Article  CAS  PubMed  Google Scholar 

  47. Luan DD, Eickbush TH (1995) RNA template requirements for target DNA-primed reverse transcription by the R2 retrotransposable element. Mol Cell Biol 15:3882–3891

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Jamburuthugoda VK, Eickbush TH (2011) The reverse transcriptase encoded by the non-LTR retrotransposon R2 is as error-prone as that encoded by HIV-1. J Mol Biol 407(5):661–672. doi:10.1016/j.jmb.2011.02.015

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Bibillo A, Eickbush TH (2002) The reverse transcriptase of the R2 non-LTR retrotransposon: continuous synthesis of cDNA on non-continuous RNA templates. J Mol Biol 316:459–473

    Article  CAS  PubMed  Google Scholar 

  50. Piskareva O, Schmatchenko V (2006) DNA polymerization by the reverse transcriptase of the human L1 retrotransposon on its own template in vitro. FEBS Lett 580:661–668

    Article  CAS  PubMed  Google Scholar 

  51. Kulpa DA, Moran JV (2006) Cis-preferential LINE-1 reverse transcriptase activity in ribonucleoprotein particles. Nat Struct Mol Biol 13:655–660

    Article  CAS  PubMed  Google Scholar 

  52. Luan DD, Korman MH, Jakubczak JL, Eickbush TH (1993) Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72:595–605

    Article  CAS  PubMed  Google Scholar 

  53. Takahashi H, Fujiwara H (2002) Transplantation of target site specificity by swapping the endonuclease domains of two LINEs. EMBO J 21:408–417

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Mandal PK, Bagchi A, Bhattacharya A, Bhattacharya S (2004) An Entamoeba histolytica LINE/SINE pair inserts at common target sites cleaved by the restriction enzyme-like LINE-encoded endonuclease. Eukaryot Cell 3:170–179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Yadav VP, Mandal PK, Rao DN, Bhattacharya S (2009) Characterization of the restriction enzyme-like endonuclease encoded by the Entamoeba histolytica non-long terminal repeat retrotransposon EhLINE1. FEBS J 276(23):7070–7082. doi:10.1111/j.1742-4658.2009.07419.x

    Article  CAS  PubMed  Google Scholar 

  56. Eickbush TH (2002) R2 and related site-specific non-long terminal repeat retrotransposons. In: Craig NL, Craigie R, Gellert M, Lambowitz AM (eds) Mobile DNA II. American Society for Microbiology, Washington, DC, pp 828–829

    Google Scholar 

  57. Brouha B, Schustak J, Badge RM, Lutz-Prigge S, Farley AH, Moran JV, Kazazian HH Jr (2003) Hot L1s account for the bulk of retrotransposition in the human population. Proc Natl Acad Sci USA 100:5280–5285

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Babushok DV, Kazazian HH Jr (2007) Progress in understanding the biology of the human mutagen LINE-1. Hum Mutat 28:527–539

    Article  CAS  PubMed  Google Scholar 

  59. Belancio VP, Hedges DJ, Deininger P (2008) Mammalian non-LTR retrotransposons: for better or worse, in sickness and in health. Genome Res 18:343–358

    Article  CAS  PubMed  Google Scholar 

  60. Dewannieux M, Esnault C, Heidmann T (2003) LINE-mediated retrotransposition of marked Alu sequences. Nat Genet 35(1):41–48

    Article  CAS  PubMed  Google Scholar 

  61. Hancks DC, Goodier JL, Mandal PK, Cheung LE, Kazazian HH Jr (2011) Retrotransposition of marked SVA elements by human L1s in cultured cells. Hum Mol Genet 20(17):3386–3400. doi:10.1093/hmg/ddr245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Feng Q, Moran JV, Kazazian HH Jr, Boeke JD (1996) Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87:905–916

    Article  CAS  PubMed  Google Scholar 

  63. Martin SL, Cruceanu M, Branciforte D, Wai-Lun Li P, Kwok SC, Hodges RS, Williams MC (2005) LINE-1 retrotransposition requires the nucleic acid chaperone activity of the ORF1 protein. J Mol Biol 348:549–561

    Article  CAS  PubMed  Google Scholar 

  64. Doucet AJ, Hulme AE, Sahinovic E, Kulpa DA, Moldovan JB, Kopera HC, Athanikar JN, Hasnaoui M, Bucheton A, Moran JV, Gilbert N (2010) Characterization of LINE-1 ribonucleoprotein particles. PLoS Genet 6(10):e1001150. doi:10.1371/journal.pgen.1001150

    Article  PubMed Central  PubMed  Google Scholar 

  65. Alisch RS, Garcia-Perez JL, Muotri AR, Gage FH, Moran JV (2006) Unconventional translation of mammalian LINE-1 retrotransposons. Genes Dev 20:210–224

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Yu F, Zingler N, Schumann G, Stratling WH (2001) Methyl-CpG-binding protein 2 represses LINE-1 expression and retrotransposition but not Alu transcription. Nucleic Acids Res 29:4493–4501

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Stenglein MD, Harris RS (2006) APOBEC3B and APOBEC3F inhibit L1 retrotransposition by a DNA deamination-independent mechanism. J Biol Chem 281:16837–16841

    Article  CAS  PubMed  Google Scholar 

  68. Kinomoto M, Kanno T, Shimura M, Ishizaka Y, Kojima A, Kurata T, Sata T, Tokunaga K (2007) All APOBEC3 family proteins differentially inhibit LINE-1 retrotransposition. Nucleic Acids Res 35:2955–2964

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Girard A, Hannon GJ (2008) Conserved themes in small-RNA-mediated transposon control. Trends Cell Biol 18:136–148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Soifer HS, Rossi JJ (2006) Small interfering RNAs to the rescue: blocking L1 retrotransposition. Nat Struct Mol Biol 13(9):758–759

    Article  CAS  PubMed  Google Scholar 

  71. Harony H, Bernes S, Siman-Tov R, Ankri S (2006) DNA methylation and targeting of LINE retrotransposons in Entamoeba histolytica and Entamoeba invadens. Mol Biochem Parasitol 147(1):55–63

    Article  CAS  PubMed  Google Scholar 

  72. Lavi T, Isakov E, Harony H, Fisher O, Siman-Tov R, Ankri S (2006) Sensing DNA methylation in the protozoan parasite Entamoeba histolytica. Mol Microbiol 62(5):1373–1386

    Article  CAS  PubMed  Google Scholar 

  73. Zhang H, Ehrenkaufer GM, Pompey JM, Hackney JA, Singh U (2008) Small RNAs with 5′-polyphosphate termini associate with a Piwi-related protein and regulate gene expression in the single-celled eukaryote Entamoeba histolytica. PLoS Pathog 4(11):e1000219. doi:10.1371/journal.ppat.1000219

    Article  PubMed Central  PubMed  Google Scholar 

  74. Yadav VP, Mandal PK, Bhattacharya A, Bhattacharya S (2012) Recombinant SINEs are formed at high frequency during induced retrotransposition in vivo. Nat Commun 3:854. doi:10.1038/ncomms1855

    Article  PubMed  Google Scholar 

  75. Derr LK, Strathern JN (1993) A role for reverse transcripts in gene conversion. Nature (Lond) 361:170–173

    Article  CAS  Google Scholar 

  76. Delviks-Frankenberry K, Galli A, Nikolaitchik O, Mens H, Pathak VK, Hu WS (2011) Mechanisms and factors that influence high frequency retroviral recombination. Viruses 3:1650–1680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Gogvadze E, Barbisan C, Lebrun MH, Buzdin A (2007) Tripartite chimeric pseudogene from the genome of rice blast fungus Magnaporthe grisea suggests double template jumps during long interspersed nuclear element (LINE) reverse transcription. BMC Genomics 8:360

    Article  PubMed Central  PubMed  Google Scholar 

  78. Garcia-Perez JL, Doucet AJ, Bucheton A, Moran JV, Gilbert N (2007) Distinct mechanisms for trans-mediated mobilization of cellular RNAs by the LINE-1 reverse transcriptase. Genome Res 17:602–611

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Bibillo A, Eickbush TH (2004) End-to-end template jumping by the reverse transcriptase encoded by the R2 retrotransposon. J Biol Chem 279:14945–14953

    Article  CAS  PubMed  Google Scholar 

  80. Carroll ML, Roy-Engel AM, Nguyen SV et al (2001) Large-scale analysis of the Alu Ya5 and Yb8 subfamilies and their contribution to human genomic diversity. J Mol Biol 311:17–40

    Article  CAS  PubMed  Google Scholar 

  81. Srivastava S, Bhattacharya S, Paul J (2005) Species- and strain-specific probes derived from repetitive DNA for distinguishing Entamoeba histolytica and Entamoeba dispar. Exp Parasitol 110:303–308

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Kumari V (2012) Genomic distribution and expression of the retrotransposable element SINE1 in Entamoeba. Ph.D. thesis, Jawaharlal Nehru University, New Delhi

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudha Bhattacharya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Yadav, V.P., Bhattacharya, S. (2015). The Biology of Retrotransposition in Entamoeba histolytica . In: Nozaki, T., Bhattacharya, A. (eds) Amebiasis. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55200-0_10

Download citation

Publish with us

Policies and ethics