Skip to main content

Nanocarbon Film-Based Electrochemical Detectors and Biosensors

  • Chapter
  • First Online:
Nanobiosensors and Nanobioanalyses
  • 1438 Accesses

Abstract

For electroanalytical or electrochemical biosensor applications, carbon electrodes are more suitable than other electrode materials including gold, platinum and various metal oxide-based electrodes. This is because carbon-based electrodes have a wide potential window and a relatively low background noise level, which is very important as regards the electrochemical detection of certain biomolecules. Recently, new carbon materials including carbon nanotubes (CNTs), graphene and boron-doped diamond (BDD) have been developed and employed as electrode materials. BDD has been applied to electroanalysis because of its extremely wide potential window and stability. In contrast, nanocarbon materials such as CNTs and graphene have been actively developed as the electrodes of energy devices such as batteries and fuel cells. Recently, these materials have been studied as sensing platforms for such biomolecules as DNA and proteins. Compared with these nanocarbons, which have a powder-like or fiber morphology, carbon films are advantageous as electrodes for biochemical detection or biosensor platforms. This is because they are sufficiently conductive without needing to be doped with other atoms, and they have a relatively low background current, which is effective for obtaining a high signal-to-noise ratio or a low detection limit. Film electrodes can be microfabricated into sensor electrodes of various sizes and shapes with excellent reproducibility. Here, we introduce different kinds of carbon-based film electrodes fabricated with a variety of techniques including the pyrolysis of organic films and vacuum processes such as sputtering or chemical vapor deposition (CVD), and we describe their application for electroanalysis and chemical and biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Blackstock JJ, Rostami AA, Nowak AM et al (2004) Ultraflat carbon film electrodes prepared by electron beam evaporation. Anal Chem 76(9):2544–2552

    Article  CAS  PubMed  Google Scholar 

  • Brooksby PA, Downard AJ (2004) Electrochemical and atomic force microscopy study of carbon surface modification via diazonium reduction in aqueous and acetonitrile solutions. Langmuir 20(12):5038–5045

    Article  CAS  PubMed  Google Scholar 

  • Chiku M, Nakamura J, Fujishima A et al (2008) Conformational change detection in nonmetal proteins by direct electrochemical oxidation using diamond electrodes. Anal Chem 80(15):5783–5787

    Article  CAS  PubMed  Google Scholar 

  • Compton RG, Foord JS, Marken F (2003) Electroanalysis at diamond-like and doped-diamond electrodes. Electroanalysis 15(17):1349–1363

    Article  CAS  Google Scholar 

  • Fiaccabrino GC, Tang XM, Skinner N et al (1996) Electrochemical characterization of thin-film carbon interdigitated electrode arrays. Anal Chim Acta 326(1–3):155–161

    Article  CAS  Google Scholar 

  • Fischer DJ, Hulvey MK, Regel AR et al (2009) Amperometric detection in microchip electrophoresis devices: effect of electrode material and alignment on analytical performance. Electrophoresis 30(19):3324–3333

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goto K, Kato D, Sekioka N et al (2010) Direct electrochemical detection of DNA methylation for retinoblastoma and CpG fragments using a nanocarbon film. Anal Biochem 405(1):59–66

    Article  CAS  PubMed  Google Scholar 

  • Hayashi K, Horiuchi T, Kurita R et al (2000) Real-time electrochemical imaging using an individually addressable multi-channel electrode. Biosens Bioelectron 15(9–10):523–529

    Article  CAS  PubMed  Google Scholar 

  • He Y, Peng L, Robertson J (2011) Fabrication and bio-functionalization of tetrahedral amorphous carbon thin films for biosensor applications. Diam Relat Mater 20(7):1020–1025

    Article  Google Scholar 

  • Hebert NE, Snyder B, McCreery RL et al (2003) Performance of pyrolyzed photoresist carbon films in a microchip capillary electrophoresis device with sinusoidal voltammetric detection. Anal Chem 75(16):4265–4271

    Article  CAS  PubMed  Google Scholar 

  • Higson SPJ, Vadgama PM (1995) Diamond-like carbon-coated films for enzyme electrodes – characterization of biocompatibility and substrate diffusion limiting properties. Anal Chim Acta 300(1–3):77–83

    Article  CAS  Google Scholar 

  • Hirono S, Umemura S, Tomita M et al (2002) Superhard conductive carbon nanocrystallite films. Appl Phys Lett 80(3):425–427

    Article  CAS  Google Scholar 

  • Iwasaki Y, Niwa O, Morita M et al (1996) Selective electrochemical detection using a split disk array electrode in a thin-layer radial flow system. Anal Chem 68(21):3797–3800

    Article  CAS  PubMed  Google Scholar 

  • Javier del Campo F, Godignon P, Aldous L et al (2011) Fabrication of PPF electrodes by a rapid thermal process. J Electrochem Soc 158(1):H63–H68

    Article  Google Scholar 

  • Jo-Il K, Bordeanu A, Jae-Chul P (2009) Diamond-like carbon (DLC) microelectrode for electrochemical ELISA. Biosens Bioelectron 24(5):1394–1398

    Article  Google Scholar 

  • Kamata T, Kato D, Hirono S et al (2013) Structure and electrochemical performance of nitrogen-doped carbon film formed by electron cyclotron resonance sputtering. Anal Chem 85(20):9845–9851

    Article  CAS  PubMed  Google Scholar 

  • Kaplan ML, Schmidt PH, Chen CH et al (1980) Carbon-films with relatively high conductivity. Appl Phys Lett 36(10):867–869

    Article  CAS  Google Scholar 

  • Kato D, Sekioka N, Ueda A et al (2008a) A nanocarbon film electrode as a platform for exploring DNA methylation. J Am Chem Soc 130(12):3716–3717

    Article  CAS  PubMed  Google Scholar 

  • Kato D, Sekioka N, Ueda A et al (2008b) Nanohybrid carbon film for electrochemical detection of SNPs without hybridization or labeling. Angew Chem Int Ed 47(35):6681–6684

    Article  CAS  Google Scholar 

  • Kato D, Komoriya M, Nakamoto K et al (2011) Electrochemical determination of oxidative damaged DNA with high sensitivity and stability using a nanocarbon film. Anal Sci 27(7):703–707

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Song X, Kinoshita K et al (1998) Electrochemical studies of carbon films from pyrolyzed photoresist. J Electrochem Soc 145(7):2314–2319

    Article  CAS  Google Scholar 

  • Kostecki R, Song X, Kinoshita K (1999) Electrochemical analysis of carbon interdigitated microelectrodes. Electrochem Solid State Lett 2(9):465–467

    Article  CAS  Google Scholar 

  • Kurita R, Hayashi K, Fan X et al (2002) Microfluidic device integrated with pre-reactor and dual enzyme-modified microelectrodes for monitoring in vivo glucose and lactate. Sens Actuator B 87(2):296–303

    Article  CAS  Google Scholar 

  • Lagrini A, Deslouis C, Cachet H et al (2004) Elaboration and electrochemical characterization of nitrogenated amorphous carbon films. Electrochem Commun 6(3):245–248

    Article  CAS  Google Scholar 

  • Larsen ST, Argyraki A, Amato L et al (2013) Pyrolyzed photoresist electrodes for integration in microfluidic chips for transmitter detection from biological cells. Electrochem Lett 2(5):B5–B7

    Article  CAS  Google Scholar 

  • Lee JA, Hwang S, Kwak J et al (2008) An electrochemical impedance biosensor with aptamer-modified pyrolyzed carbon electrode for label-free protein detection. Sens Actuator B 129(1):372–379

    Article  CAS  Google Scholar 

  • Liu ZM, Niwa O, Kurita R et al (2000) Carbon film-based interdigitated array microelectrode used in capillary electrophoresis with electrochemical detection. Anal Chem 72(6):1315–1321

    Article  CAS  PubMed  Google Scholar 

  • Lyons AM, Wilkins CW, Robbins M (1983) Thin pinhole-free carbon-films. Thin Solid Films 103(4):333–341

    Article  CAS  Google Scholar 

  • Maalouf R, Soldatkin A, Vittoria O et al (2006) Study of different carbon materials for amperometric enzyme biosensor development. Mater Sci Eng C 26(2–3):564–567

    Article  CAS  Google Scholar 

  • Manivannan A, Kawasaki R, Tryk DA et al (2004) Interaction of Pb and Cd during anodic stripping voltammetric analysis at boron-doped diamond electrodes. Electrochim Acta 49(20):3313–3318

    Article  CAS  Google Scholar 

  • McCreery RL (2008) Advanced carbon electrode materials for molecular electrochemistry. Chem Rev 108(7):2646–2687

    Article  CAS  PubMed  Google Scholar 

  • Miyake T, Yoshino S, Yamada T et al (2011) Self-regulating enzyme-nanotube ensemble films and their application as flexible electrodes for biofuel cells. J Am Chem Soc 133(13):5129–5134

    Article  CAS  PubMed  Google Scholar 

  • Morton KC, Morris CA, Derylo MA et al (2011) Carbon electrode fabrication from pyrolyzed parylene C. Anal Chem 83(13):5447–5452

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Niwa O (2005) Electroanalytical chemistry with carbon film electrodes and micro and nano-structured carbon film-based electrodes. Bull Chem Soc Jpn 78(4):555–571

    Article  CAS  Google Scholar 

  • Niwa O, Tabei H (1994) Voltammetric measurements of reversible and quasi-reversible redox species using carbon-film based interdigitated array microelectrodes. Anal Chem 66(2):285–289

    Article  CAS  Google Scholar 

  • Niwa O, Horiuchi T, Tabei H (1994) Electrochemical properties of carbon-based interdigitated microarray electrodes fabricated by the pyrolysis of electrochemically prepared conducting films. J Electroanal Chem 367(1–2):265–269

    Article  CAS  Google Scholar 

  • Niwa O, Jia J, Sato Y et al (2006) Electrochemical performance of Angstrom level flat sputtered carbon film consisting of sp(2) and sp(3) mixed bonds. J Am Chem Soc 128(22):7144–7145

    Article  CAS  PubMed  Google Scholar 

  • Ohara TJ, Rajagopalan R, Heller A (1993) Glucose electrodes based on cross-linked Os(bpy)(2) (+/2+) complexed poly(L-vinylimidazole) films. Anal Chem 65(23):3512–3517

    Article  CAS  PubMed  Google Scholar 

  • Pocard NL, Alsmeyer DC, McCreery RL et al (1992) Nanoscale platinum(0) clusters in glassy-carbon – synthesis, characterization, and uncommon catalytic activity. J Am Chem Soc 114(2):769–771

    Article  CAS  Google Scholar 

  • Pumera M, Ambrosi A, Bonanni A et al (2010) Graphene for electrochemical sensing and biosensing. Trends Anal Chem 29(9):954–965

    Article  CAS  Google Scholar 

  • Qureshi A, Kang WP, Davidson JL et al (2009) Review on carbon-derived, solid-state, micro and nano sensors for electrochemical sensing applications. Diam Relat Mater 18(12):1401–1420

    Article  CAS  Google Scholar 

  • Ranganathan S, McCreery RL (2001) Electroanalytical performance of carbon films with near-atomic flatness. Anal Chem 73(5):893–900

    Article  CAS  PubMed  Google Scholar 

  • Sarada BV, Rao TN, Tryk DA et al (2000) Electrochemical oxidation of histamine and serotonin at highly boron doped diamond electrodes. Anal Chem 72(7):1632–1638

    Article  CAS  PubMed  Google Scholar 

  • Schnupp R, Kuhnhold R, Temmel G et al (1998) Thin carbon films as electrodes for bioelectronic applications. Biosens Bioelectron 13(7–8):889–894

    Article  CAS  Google Scholar 

  • Sekioka N, Kato D, Kurita R et al (2008) Improved detection limit for an electrochemical gamma-aminobutyric acid sensor based on stable NADPH detection using an electron cyclotron resonance sputtered carbon film electrode. Sens Actuator B 129(1):442–449

    Article  CAS  Google Scholar 

  • Singh YS, Sawarynski LE, Michael HM et al (2010) Boron-doped diamond microelectrodes reveal reduced serotonin uptake rates in lymphocytes from adult rhesus monkeys carrying the short allele of the 5-HTTLPR. ACS Chem Neurosci 1(1):49–64

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Swain GM, Ramesham R (1993) The electrochemical activity of boron-doped polycrystalline diamond thin-film electrodes. Anal Chem 65(4):345–351

    Article  CAS  Google Scholar 

  • Tabei H, Morita M, Niwa O et al (1992) Fabrication and electrochemical features of new carbon based interdigitated array microelectrodes. J Electroanal Chem 334(1–2):25–33

    Article  CAS  Google Scholar 

  • Ueda A, Kato D, Kurita R et al (2011) Efficient direct electron transfer with enzyme on a nanostructured carbon film fabricated with a maskless top-down UV/ozone process. J Am Chem Soc 133(13):4840–4846

    Article  CAS  PubMed  Google Scholar 

  • Vashist SK, Zheng D, Al-Rubeaan K et al (2011) Advances in carbon nanotube based electrochemical sensors for bioanalytical applications. Biotechnol Adv 29(2):169–188

    Article  CAS  PubMed  Google Scholar 

  • Yamamura S, Hoshikawa M, Kato D et al (2013) ONO-2506 inhibits spike-wave discharges in a genetic animal model without affecting traditional convulsive tests via gliotransmission regulation. Br J Pharmacol 168:1088–1100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang X, Haubold L, DeVivo G et al (2012) Electroanalytical performance of nitrogen-containing tetrahedral amorphous carbon thin-film electrodes. Anal Chem 84(14):6240–6248

    Article  CAS  PubMed  Google Scholar 

  • You TY, Niwa O, Tomita M et al (2003) Characterization of platinum nanoparticle-embedded carbon film electrode and its detection of hydrogen peroxide. Anal Chem 75(9):2080–2085

    Article  CAS  PubMed  Google Scholar 

  • Zeng A, Liu E, Tan SN et al (2002) Cyclic voltammetry studies of sputtered nitrogen doped diamond-like carbon film electrodes. Electroanalysis 14(15–16):1110–1115

    Article  CAS  Google Scholar 

  • Zhou M, Zhai YM, Dong SJ (2009) Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal Chem 81(14):5603–5613

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamu Niwa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Niwa, O., Kato, D. (2015). Nanocarbon Film-Based Electrochemical Detectors and Biosensors. In: Vestergaard, M., Kerman, K., Hsing, IM., Tamiya, E. (eds) Nanobiosensors and Nanobioanalyses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55190-4_7

Download citation

Publish with us

Policies and ethics