Skip to main content

Device Architecture and Biosensing Applications for Attractive One- and Two-Dimensional Nanostructures

  • Chapter
  • First Online:
Nanobiosensors and Nanobioanalyses

Abstract

In the past decade, a myriad of novel nanoscale materials have been discovered and/or synthesized. New device architectures configured with these novel nanomaterials have been fabricated for innovative experiments and practical applications in electronics, optoelectronics, biosensors, and more. In this chapter, we introduce attractive one-dimensional (1D) and two-dimensional (2D) nanostructures and their fabricated device architectures for biosensing applications. In particular, this chapter focuses on 1D silicon nanowires and 2D graphene. We first describe the preparation and synthesis methods that have been used to generate these nanomaterials. The unique characteristics of these nanostructures and their physical, chemical, mechanical, and electrical properties are discussed. Current techniques for device fabrication are introduced. Examples of various biological and cellular applications are also included. Field-effect transistor devices constructed from 1D silicon nanowires and 2D graphene sheets are described, and we discuss biosensors for the investigation of protein–protein interactions, neural signal transmission, viral infection diagnosis, biomolecular detection, nucleic acid screening and sequencing, and real-time cellular recording.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Berger C, Song Z, Li T, Li X, Ogbazghi AY, Feng R, Dai Z, Marchenkov AN, Conrad EH, First PN, de Heer WA (2004) Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B 108(52):19912–19916

    CAS  Google Scholar 

  • Bunimovich YL, Shin YS, Yeo WS, Amori M, Kwong G, Heath JR (2006) Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution. J Am Chem Soc 128(50):16323–16331

    PubMed Central  CAS  PubMed  Google Scholar 

  • Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81(1):109–162

    CAS  Google Scholar 

  • Chae SJ, Gunes F, Kim KK, Kim ES, Han GH, Kim SM, Shin HJ, Yoon SM, Choi JY, Park MH, Yang CW, Pribat D, Lee YH (2009) Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: wrinkle formation. Adv Mater 21(22):2328

    CAS  Google Scholar 

  • Chan J, Venugopal A, Pirkle A, McDonnell S, Hinojos D, Magnuson CW, Ruoff RS, Colombo L, Wallace RM, Vogel EM (2012) Reducing extrinsic performance-limiting factors in graphene grown by chemical vapor deposition. ACS Nano 6(4):3224–3229

    CAS  PubMed  Google Scholar 

  • Chang YK, Hong FCN (2009) The fabrication of ZnO nanowire field-effect transistors by roll-transfer printing. Nanotechnology 20(19)

    Google Scholar 

  • Chang KS, Sun CJ, Chiang PL, Chou AC, Lin MC, Liang C, Hung HH, Yeh YH, Chen CD, Pan CY, Chen YT (2012) Monitoring extracellular K+ flux with a valinomycin-coated silicon nanowire field-effect transistor. Biosens Bioelectron 31(1):137–143

    CAS  PubMed  Google Scholar 

  • Chen P, Gu JJ, Brandin E, Kim YR, Wang Q, Branton D (2004a) Probing single DNA molecule transport using fabricated nanopores. Nano Lett 4(11):2293–2298

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen RJ, Choi HC, Bangsaruntip S, Yenilmez E, Tang X, Wang Q, Chang Y-L, Dai H (2004b) An investigation of the mechanisms of electronic sensing of protein adsorption on carbon nanotube devices. J Am Chem Soc 126(5):1563–1568

    CAS  PubMed  Google Scholar 

  • Chen KI, Li BR, Chen YT (2011) Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano Today 6(2):131–154

    CAS  Google Scholar 

  • Cheng H-C, Shiue R-J, Tsai C-C, Wang W-H, Chen Y-T (2011) High-quality graphene p-n junctions via resist-free fabrication and solution-based noncovalent functionalization. ACS Nano 5(3):2051–2059

    CAS  PubMed  Google Scholar 

  • Chiang PL, Chou TC, Wu TH, Li CC, Liao CD, Lin JY, Tsai MH, Tsai CC, Sun CJ, Wang CH, Fang JM, Chen YT (2012) Nanowire transistor-based ultrasensitive virus detection with reversible surface functionalization. Chem Asian J 7(9):2073–2079

    CAS  PubMed  Google Scholar 

  • Choi YK, Zhu J, Grunes J, Bokor J, Somorjai GA (2003) Fabrication of sub-10-nm silicon nanowire arrays by size reduction lithography. J Phys Chem B 107(15):3340–3343

    CAS  Google Scholar 

  • Craighead HG, Howard RE, Jackel LD, Mankiewich PM (1983) 10-nm line width electron-beam lithography on gaas. Appl Phys Lett 42(1):38–40

    CAS  Google Scholar 

  • Cui Y, Duan X, Hu J, Lieber CM (2000) Doping and electrical transport in silicon nanowires. J Phys Chem B 104(22):5213–5216

    CAS  Google Scholar 

  • Cui Y, Wei QQ, Park HK, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533):1289–1292. doi:10.1126/science.1062711

    CAS  PubMed  Google Scholar 

  • Curreli M, Zhang R, Ishikawa FN, Chang HK, Cote RJ, Zhou C, Thompson ME (2008) Real-time, label-free detection of biological entities using nanowire-based FETs. IEEE Trans Nanotechnol 7(6):651–667

    Google Scholar 

  • Das A, Pisana S, Chakraborty B, Piscanec S, Saha SK, Waghmare UV, Novoselov KS, Krishnamurthy HR, Geim AK, Ferrari AC, Sood AK (2008) Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat Nanotechnol 3(4):210–215

    CAS  PubMed  Google Scholar 

  • Dean CR, Young AF, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard KL, Hone J (2010) Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol 5(10):722–726

    CAS  PubMed  Google Scholar 

  • Dekker C (2007) Solid-state nanopores. Nat Nanotechnol 2(4):209–215

    CAS  PubMed  Google Scholar 

  • Demami F, Ni L, Rogel R, Salaun AC, Pichon L (2012) Silicon nanowires based resistors as gas sensors. Sensor Actuat B Chem 170:158–162

    CAS  Google Scholar 

  • Duan XJ, Gao RX, Xie P, Cohen-Karni T, Qing Q, Choe HS, Tian BZ, Jiang XC, Lieber CM (2012) Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor. Nat Nanotechnol 7(3):174–179

    CAS  Google Scholar 

  • Duan XJ, Fu TM, Liu J, Lieber CM (2013) Nanoelectronics-biology frontier: from nanoscopic probes for action potential recording in live cells to three-dimensional cyborg tissues. Nano Today 8(4):351–373

    PubMed Central  CAS  PubMed  Google Scholar 

  • Emtsev KV, Bostwick A, Horn K, Jobst J, Kellogg GL, Ley L, McChesney JL, Ohta T, Reshanov SA, Rohrl J, Rotenberg E, Schmid AK, Waldmann D, Weber HB, Seyller T (2009) Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat Mater 8(3):203–207

    CAS  PubMed  Google Scholar 

  • Faller M, Niederweis M, Schulz GE (2004) The structure of a mycobacterial outer-membrane channel. Science 303(5661):1189–1192

    CAS  PubMed  Google Scholar 

  • Fan ZY, Ho JC, Jacobson ZA, Yerushalmi R, Alley RL, Razavi H, Javey A (2008) Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. Nano Lett 8(1):20–25

    CAS  PubMed  Google Scholar 

  • Freer EM, Grachev O, Duan XF, Martin S, Stumbo DP (2010) High-yield self-limiting single-nanowire assembly with dielectrophoresis. Nat Nanotechnol 5(7):525–530

    CAS  PubMed  Google Scholar 

  • Gao RX, Strehle S, Tian BZ, Cohen-Karni T, Xie P, Duan XJ, Qing Q, Lieber CM (2012) Outside looking in: nanotube transistor intracellular sensors. Nano Lett 12(6):3329–3333

    PubMed Central  CAS  PubMed  Google Scholar 

  • Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191

    CAS  PubMed  Google Scholar 

  • Hakim MMA, Lombardini M, Sun K, Giustiniano F, Roach PL, Davies DE, Howarth PH, de Planque MRR, Morgan H, Ashburn P (2012) Thin film polycrystalline silicon nanowire biosensors. Nano Lett 12(4):1868–1872

    CAS  PubMed  Google Scholar 

  • He QY, Sudibya HG, Yin ZY, Wu SX, Li H, Boey F, Huang W, Chen P, Zhang H (2010) Centimeter-long and large-scale micropatterns of reduced graphene oxide films: fabrication and sensing applications. ACS Nano 4(6):3201–3208

    CAS  PubMed  Google Scholar 

  • He YH, Scheicher RH, Grigoriev A, Ahuja R, Long SB, Huo ZL, Liu M (2011) Enhanced DNA sequencing performance through edge-hydrogenation of graphene electrodes. Adv Funct Mater 21(14):2674–2679

    CAS  Google Scholar 

  • Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun’Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3(9):563–568

    CAS  PubMed  Google Scholar 

  • Hsiao CY, Lin CH, Hung CH, Su CJ, Lo YR, Lee CC, Lin HC, Ko FH, Huang TY, Yang YS (2009) Novel poly-silicon nanowire field effect transistor for biosensing application. Biosens Bioelectron 24(5):1223–1229

    CAS  PubMed  Google Scholar 

  • Hu J, Odom TW, Lieber CM (1999) Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc Chem Res 32(5):435–445

    CAS  Google Scholar 

  • Huang Y, Duan XF, Wei QQ, Lieber CM (2001) Directed assembly of one-dimensional nanostructures into functional networks. Science 291(5504):630–633

    CAS  PubMed  Google Scholar 

  • Huang YX, Cai D, Chen P (2011a) Micro- and nanotechnologies for study of cell secretion. Anal Chem 83(12):4393–4406

    CAS  PubMed  Google Scholar 

  • Huang YX, Dong XC, Liu YX, Li LJ, Chen P (2011b) Graphene-based biosensors for detection of bacteria and their metabolic activities. J Mater Chem 21(33):12358–12362

    CAS  Google Scholar 

  • Hurt AC, Baas C, Deng Y-M, Roberts S, Kelso A, Barr IG (2009) Performance of influenza rapid point-of-care tests in the detection of swine lineage a(H1N1) influenza viruses. Influenza Other Respir Viruses 3(4):171–176

    CAS  PubMed  Google Scholar 

  • Hwang EH, Adam S, Das Sarma S (2007) Transport in chemically doped graphene in the presence of adsorbed molecules. Phys Rev B 76(19):195421

    Google Scholar 

  • Ishigami M, Chen JH, Cullen WG, Fuhrer MS, Williams ED (2007) Atomic structure of graphene on SiO2. Nano Lett 7(6):1643–1648

    CAS  PubMed  Google Scholar 

  • Jentsch TJ (2000) Neuronal KCNQ potassium channels: physiology and role in disease. Nat Rev Neurosci 1(1):21–30

    CAS  PubMed  Google Scholar 

  • Jiang Z, Qing Q, Xie P, Gao RX, Lieber CM (2012) Kinked p–n junction nanowire probes for high spatial resolution sensing and intracellular recording. Nano Lett 12(3):1711–1716

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kao LTH, Shankar L, Kang TG, Zhang GJ, Tay GKI, Rafei SRM, Lee CWH (2011) Multiplexed detection and differentiation of the DNA strains for influenza A (H1N1 2009) using a silicon-based microfluidic system. Biosens Bioelectron 26(5):2006–2011

    CAS  PubMed  Google Scholar 

  • Knopfmacher O, Tarasov A, Fu WY, Wipf M, Niesen B, Calame M, Schonenberger C (2010) Nernst limit in dual-gated Si-nanowire FET sensors. Nano Lett 10(6):2268–2274

    CAS  PubMed  Google Scholar 

  • Kwiat M, Elnathan R, Pevzner A, Peretz A, Barak B, Peretz H, Ducobni T, Stein D, Mittelman L, Ashery U (2012) Highly ordered large-scale neuronal networks of individual cells-toward single cell to 3D nanowire intracellular interfaces. ACS Appl Mater Inter 4(7):3542–3549

    CAS  Google Scholar 

  • Li Z, Chen Y, Li X, Kamins T, Nauka K, Williams RS (2004) Sequence-specific label-free DNA sensors based on silicon nanowires. Nano Lett 4(2):245–247

    Google Scholar 

  • Li XL, Zhang L, Wang XR, Shimoyama I, Sun XM, Seo WS, Dai HJ (2007) Langmuir-Blodgett assembly of densely aligned single-walled carbon nanotubes from bulk materials. J Am Chem Soc 129(16):4890–4891

    CAS  PubMed  Google Scholar 

  • Li BR, Chen CW, Yang WL, Lin TY, Pan CY, Chen YT (2013) Biomolecular recognition with a sensitivity-enhanced nanowire transistor biosensor. Biosens Bioelectron 45:252–259

    CAS  PubMed  Google Scholar 

  • Liao C-D, Lu Y-Y, Tamalampudi SR, Cheng H-C, Chen Y-T (2013) Chemical vapor deposition synthesis and Raman spectroscopic characterization of large-area graphene sheets. J Phys Chem A 117(39):9454–9461

    CAS  PubMed  Google Scholar 

  • Lin YM, Avouris P (2008) Strong suppression of electrical noise in bilayer graphene nanodevices. Nano Lett 8(8):2119–2125

    CAS  PubMed  Google Scholar 

  • Lin HC, Lee MH, Su CJ, Huang TY, Lee CC, Yang YS (2005) A simple and low-cost method to fabricate TFTs with poly-Si nanowire channel. IEEE Trans Nanotechnol 26(9):643–645

    CAS  Google Scholar 

  • Lin SP, Pan CY, Tseng KC, Lin MC, Chen CD, Tsai CC, Yu SH, Sun YC, Lin TW, Chen YT (2009) A reversible surface functionalized nanowire transistor to study protein-protein interactions. Nano Today 4(3):235–243

    CAS  Google Scholar 

  • Lin TW, Hsieh PJ, Lin CL, Fang YY, Yang JX, Tsai CC, Chiang PL, Pan CY, Chen YT (2010) Label-free detection of protein-protein interactions using a calmodulin-modified nanowire transistor. Proc Natl Acad Sci U S A 107(3):1047–1052

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lin TY, Li BR, Tsai ST, Chen CW, Chen CH, Chen YT, Pan CY (2013) Improved silicon nanowire field-effect transistors for fast protein-protein interaction screening. Lab Chip 13(4):676–684

    CAS  PubMed  Google Scholar 

  • Liu YX, Dong XC, Chen P (2012) Biological and chemical sensors based on graphene materials. Chem Soc Rev 41(6):2283–2307

    CAS  PubMed  Google Scholar 

  • Ma D, Lee C, Au F, Tong S, Lee S (2003) Small-diameter silicon nanowire surfaces. Science 299(5614):1874–1877

    CAS  PubMed  Google Scholar 

  • MacDonald PE, Ha XF, Wang J, Smukler SR, Sun AM, Gaisano HY, Salapatek AMF, Backx PH, Wheeler MB (2001) Members of the Kv1 and Kv2 voltage-dependent K+ channel families regulate insulin secretion. Mol Endocrinol 15(8):1423–1435

    CAS  PubMed  Google Scholar 

  • Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS (2009) Raman spectroscopy in graphene. Phys Rep 473(5–6):51–87

    CAS  Google Scholar 

  • Mao S, Lu GH, Yu KH, Bo Z, Chen JH (2010) Specific protein detection using thermally reduced graphene oxide sheet decorated with gold nanoparticle-antibody conjugates. Adv Mater 22(32):3521–3526

    CAS  PubMed  Google Scholar 

  • Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814

    CAS  PubMed  Google Scholar 

  • MartĂ­nez J, MartĂ­nez RV, Garcia R (2008) Silicon nanowire transistors with a channel width of 4 nm fabricated by atomic force microscope nanolithography. Nano Lett 8(11):3636–3639

    PubMed  Google Scholar 

  • MartĂ­nez RV, MartĂ­nez J, Garcia R (2010) Silicon nanowire circuits fabricated by AFM oxidation nanolithography. Nanotechnology 21(24):245301

    PubMed  Google Scholar 

  • Mattevi C, Kim H, Chhowalla M (2011) A review of chemical vapour deposition of graphene on copper. J Mater Chem 21(10):3324–3334

    CAS  Google Scholar 

  • McAlpine MC, Ahmad H, Wang DW, Heath JR (2007) Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nat Mater 6(5):379–384

    PubMed Central  CAS  PubMed  Google Scholar 

  • Melosh NA, Boukai A, Diana F, Gerardot B, Badolato A, Petroff PM, Heath JR (2003) Ultrahigh-density nanowire lattices and circuits. Science 300(5616):112–115

    CAS  PubMed  Google Scholar 

  • Merchant CA, Healy K, Wanunu M, Ray V, Peterman N, Bartel J, Fischbein MD, Venta K, Luo Z, Johnson ATC, Drndić M (2010) DNA translocation through graphene nanopores. Nano Lett 10(8):2915–2921

    CAS  PubMed  Google Scholar 

  • Morton KJ, Nieberg G, Bai S, Chou SY (2008) Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50: 1) silicon pillar arrays by nanoimprint and etching. Nanotechnology 19(34):345301

    PubMed  Google Scholar 

  • Nakajima N, Ikada Y (1995) Mechanism of amide formation by carbodiimide for bioconjugation in aqueous media. Bioconj Chem 6(1):123–130

    CAS  Google Scholar 

  • Nelson T, Zhang B, Prezhdo OV (2010) Detection of nucleic acids with graphene nanopores: ab initio characterization of a novel sequencing device. Nano Lett 10(9):3237–3242

    CAS  PubMed  Google Scholar 

  • Nguyen P, Berry V (2012) Graphene interfaced with biological cells: opportunities and challenges. J Phys Chem Lett 3(8):1024–1029

    CAS  Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    CAS  PubMed  Google Scholar 

  • Ohno Y, Maehashi K, Matsumoto K (2010) Label-free biosensors based on aptamer-modified graphene field-effect transistors. J Am Chem Soc 132(51):18012–18013

    CAS  PubMed  Google Scholar 

  • Park IY, Li ZY, Li XM, Pisano AP, Williams RS (2007) Towards the silicon nanowire-based sensor for intracellular biochemical detection. Biosens Bioelectron 22(9–10):2065–2070

    CAS  PubMed  Google Scholar 

  • Patolsky F, Timko BP, Yu G, Fang Y, Greytak AB, Zheng G, Lieber CM (2006a) Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 313(5790):1100–1104

    CAS  PubMed  Google Scholar 

  • Patolsky F, Zheng G, Lieber CM (2006b) Nanowire sensors for medicine and the life sciences. Nanomedicine 1(1):51–65

    CAS  PubMed  Google Scholar 

  • Poghossian A, Ingebrandt S, Abouzar M, Schöning M (2007) Label-free detection of charged macromolecules by using a field-effect-based sensor platform: experiments and possible mechanisms of signal generation. Appl Phys A Mater 87(3):517–524

    CAS  Google Scholar 

  • Qing Q, Pal SK, Tian B, Duan X, Timko BP, Cohen-Karni T, Murthy VN, Lieber CM (2010) Nanowire transistor arrays for mapping neural circuits in acute brain slices. Proc Natl Acad Sci U S A 107(5):1882–1887

    PubMed Central  CAS  PubMed  Google Scholar 

  • Raymo FM, Yildiz I (2007) Luminescent chemosensors based on semiconductor quantum dots. Phys Chem Chem Phys 9(17):2036–2043

    CAS  PubMed  Google Scholar 

  • Reina A, Son H, Jiao L, Fan B, Dresselhaus MS, Liu Z, Kong J (2008) Transferring and identification of single- and few-layer graphene on arbitrary substrates. J Phys Chem C 112(46):17741–17744

    CAS  Google Scholar 

  • Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105(4):1547–1562

    CAS  PubMed  Google Scholar 

  • Sala F, Nistri A, Criado M (2008) Nicotinic acetylcholine receptors of adrenal chromaffin cells. Acta Physiol 192(2):203–212

    CAS  Google Scholar 

  • Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6(9):652–655

    CAS  PubMed  Google Scholar 

  • Schneider GF, Kowalczyk SW, Calado VE, Pandraud G, Zandbergen HW, Vandersypen LMK, Dekker C (2010) DNA translocation through graphene nanopores. Nano Lett 10(8):3163–3167

    CAS  PubMed  Google Scholar 

  • Shao M, Ma DDD, Lee ST (2010) Silicon nanowires– synthesis, properties, and applications. Eur J Inorg Chem 2010(27):4264–4278

    Google Scholar 

  • Singh NA, Charlier C, Stauffer D, DuPont BR, Leach RJ, Melis R, Ronen GM, Bjerre I, Quattlebaum T, Murphy JV, McHarg ML, Gagnon D, Rosales TO, Peiffer A, Anderson VE, Leppert M (1998) A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Nat Genet 18:25–29

    CAS  PubMed  Google Scholar 

  • Soderling TR, Chang B, Brickey D (2001) Cellular signaling through multifunctional Ca2+/calmodulin-dependent protein kinase II. J Biol Chem 276:3719–3722

    CAS  PubMed  Google Scholar 

  • Stern E, Klemic JF, Routenberg DA, Wyrembak PN, Turner-Evans DB, Hamilton AD, LaVan DA, Fahmy TM, Reed MA (2007) Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 445(7127):519–522

    CAS  PubMed  Google Scholar 

  • Stolyarova E, Rim KT, Ryu S, Maultzsch J, Kim P, Brus LE, Heinz TF, Hybertsen MS, Flynn GW (2007) High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface. Proc Natl Acad Sci U S A 104(22):9209–9212

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sudibya HG, Ma J, Dong XC, Ng S, Li LJ, Liu XW, Chen P (2009) Interfacing glycosylated carbon-nanotube-network devices with living cells to detect dynamic secretion of biomolecules. Angew Chem Int Ed 48(15):2723–2726

    CAS  Google Scholar 

  • Sun Z, Yan Z, Yao J, Beitler E, Zhu Y, Tour JM (2010) Growth of graphene from solid carbon sources. Nature 468(7323):549–552

    CAS  PubMed  Google Scholar 

  • Talin AA, Hunter LL, LĂ©onard F, Rokad B (2006) Large area, dense silicon nanowire array chemical sensors. Appl Phys Lett 89(15):153102

    Google Scholar 

  • Tian B, Xie P, Kempa TJ, Bell DC, Lieber CM (2009) Single-crystalline kinked semiconductor nanowire superstructures. Nat Nanotechnol 4(12):824–829

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tian BZ, Cohen-Karni T, Qing Q, Duan XJ, Xie P, Lieber CM (2010) Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329(5993):830–834

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tong HD, Chen S, van der Wiel WG, Carlen ET, van den Berg A (2009) Novel top-down wafer-scale fabrication of single crystal silicon nanowires. Nano Lett 9(3):1015–1022

    CAS  PubMed  Google Scholar 

  • Trivedi K, Yuk H, Floresca HC, Kim MJ, Hu W (2011) Quantum confinement induced performance enhancement in sub-5-nm lithographic Si nanowire transistors. Nano Lett 11(4):1412–1417

    CAS  PubMed  Google Scholar 

  • Tsai TC, Huang FH, Chen JJJ (2013) Selective detection of dopamine in urine with electrodes modified by gold nanodendrite and anionic self-assembled monolayer. Sensor Actuat B Chem 181:179–186

    CAS  Google Scholar 

  • Venkatesan BM, Estrada D, Banerjee S, Jin XZ, Dorgan VE, Bae MH, Aluru NR, Pop E, Bashir R (2011) Stacked graphene-Al2O3 nanopore sensors for sensitive detection of DNA and DNA-protein complexes. ACS Nano 6(1):441–450

    PubMed Central  PubMed  Google Scholar 

  • Vieu C, Carcenac F, Pepin A, Chen Y, Mejias M, Lebib A, Manin-Ferlazzo L, Couraud L, Launois H (2000) Electron beam lithography: resolution limits and applications. Appl Surf Sci 164:111–117

    CAS  Google Scholar 

  • Vu XT, Eschermann JF, Stockmann R, GhoshMoulick R, Offenhausser A, Ingebrandt S (2009) Top-down processed silicon nanowire transistor arrays for biosensing. Phys Status Solid A 206(3):426–434

    CAS  Google Scholar 

  • Wagner RS, Ellis WC (1964) Vapor–liquid-solid mechanism of single crystal growth. Appl Phys Lett 4(5):89–90

    CAS  Google Scholar 

  • Wang CW, Pan CY, Wu HC, Shih PY, Tsai CC, Liao KT, Lu LL, Hsieh WH, Chen CD, Chen YT (2007) In situ detection of chromogranin A released from living neurons with a single-walled carbon-nanotube field-effect transistor. Small 3(8):1350–1355

    CAS  PubMed  Google Scholar 

  • Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G (2009) Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett 9(5):1752–1758

    CAS  PubMed  Google Scholar 

  • Wendell D, Jing P, Geng J, Subramaniam V, Lee TJ, Montemagno C, Guo PX (2009) Translocation of double-stranded DNA through membrane-adapted phi29 motor protein nanopores. Nat Nanotechnol 4(11):765–772

    PubMed Central  CAS  PubMed  Google Scholar 

  • Whang D, Jin S, Wu Y, Lieber CM (2003) Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett 3(9):1255–1259

    CAS  Google Scholar 

  • Wu Y, Cui Y, Huynh L, Barrelet CJ, Bell DC, Lieber CM (2004) Controlled growth and structures of molecular-scale silicon nanowires. Nano Lett 4(3):433–436

    CAS  Google Scholar 

  • Wuttke DS, Bjerrum MJ, Winkler JR, Gray HB (1992) Electron-tunneling pathways in cytochrome c. Science 256(5059):1007–1009

    CAS  PubMed  Google Scholar 

  • Xia F, Perebeinos V, Lin Y-M, Wu Y, Avouris P (2011) The origins and limits of metal-graphene junction resistance. Nat Nanotechnol 6(3):179–184

    CAS  PubMed  Google Scholar 

  • Yerushalmi R, Jacobson ZA, Ho JC, Fan Z, Javey A (2007) Large scale, highly ordered assembly of nanowire parallel arrays by differential roll printing. Appl Phys Lett 91(20):203104

    Google Scholar 

  • Yu GH, Cao AY, Lieber CM (2007) Large-area blown bubble films of aligned nanowires and carbon nanotubes. Nat Nanotechnol 2(6):372–377

    CAS  PubMed  Google Scholar 

  • Zhang GJ, Ning Y (2012) Silicon nanowire biosensor and its applications in disease diagnostics: a review. Anal Chem Acta 749:1–15

    CAS  Google Scholar 

  • Zheng GF, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol 23(10):1294–1301

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yit-Tsong Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Liao, CD., Tsai, TC., Lu, YY., Chen, YT. (2015). Device Architecture and Biosensing Applications for Attractive One- and Two-Dimensional Nanostructures. In: Vestergaard, M., Kerman, K., Hsing, IM., Tamiya, E. (eds) Nanobiosensors and Nanobioanalyses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55190-4_3

Download citation

Publish with us

Policies and ethics