Skip to main content

Field-Effect Transistors: Current Advances and Challenges in Bringing Them to Point-of-Care

  • Chapter
  • First Online:

Abstract

Portable, facile and accurate detection of biomarkers is essential for the development of clinically relevant and commercially viable point-of-care diagnostic devices. Such diagnostic solutions have and are constantly transforming the healthcare, environmental monitoring and food safety industries. The ever-growing demand for devices with higher sensitivity along with cost-effective packaging has put tremendous pressure on the field of biosensors. This demand for ever more parallel detection with lower manufacturing costs has to be satisfied by employing semiconductor technologies. Field-effect transistors have played an instrumental role in the development of various biosensing techniques, both as sensors and as enablers for other electronic and electrochemical techniques. This chapter reviews the application of field-effect transistors as transducer elements for biosensing applications (BioFETs), recent advances in BioFETs using novel semiconductor technologies and nanomaterials, the role of standard FETs in addressing large arrays of electrochemical sensors, and the challenges in circuitry and integration faced by electronic biosensing arrays.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Almeida SAA, Arasa E, Puyol M et al (2011) Novel LTCC-potentiometric microfluidic device for biparametric analysis of organic compounds carrying plastic antibodies as ionophores: application to sulfamethoxazole and trimethoprim. Biosens Bioelectron 30:197–203

    Article  CAS  PubMed  Google Scholar 

  • Anderson RR, Hu W, Noh JW et al (2011) Transient deflection response in microcantilever array integrated with polydimethylsiloxane (PDMS) microfluidics. Lab Chip 11:2088–2096

    Article  CAS  PubMed  Google Scholar 

  • Ang PK, Chen W, Wee ATS et al (2008) Solution-gated epitaxial graphene as pH sensor. J Am Chem Soc 130:14392–14393

    Article  CAS  PubMed  Google Scholar 

  • Araci IE, Quake SR (2012) Microfluidic very large scale integration (mVLSI) with integrated micromechanical valves. Lab Chip 12:2803–2806

    Article  CAS  PubMed  Google Scholar 

  • Astier Y, Braha O, Bayley H (2006) Toward single molecule DNA sequencing: direct identification of ribonucleoside and deoxyribonucleoside 5′-monophosphates by using an engineered protein nanopore equipped with a molecular adapter. J Am Chem Soc 128:1705–1710

    Article  CAS  PubMed  Google Scholar 

  • Ballerini DR, Li X, Shen W (2012) Patterned paper and alternative materials as substrates for low-cost microfluidic diagnostics. Microfluid Nanofluid 13:769–787

    Article  Google Scholar 

  • Bard AJ, Faulkner LR (2001) Electrochemical measurements, fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  • Benner S, Chen RJA, Wilson NA et al (2007) Sequence-specific detection of individual DNA polymerase complexes in real time using a nanopore. Nat Nanotechnol 2:718–724

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bergveld P (1970) Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans Biomed Eng 19:70–71

    Article  Google Scholar 

  • Berthier E, Young EWK, Beebe D (2012) Engineers are from PDMS-land, biologists are from polystyrenia. Lab Chip 12:1224–1237

    Article  CAS  PubMed  Google Scholar 

  • Bhalla N, Di Lorenzo M, Pula G et al (2014) Protein phosphorylation analysis based on proton release detection: potential tools for drug discovery. Biosens Bioelectron 54:109–114

    Article  CAS  PubMed  Google Scholar 

  • Bodas D, Khan-Malek C (2006) Formation of more stable hydrophilic surfaces of PDMS by plasma and chemical treatments. Microelectron Eng 83:1277–1279

    Article  CAS  Google Scholar 

  • Brug GJ, van den Eeden ALG, Sluyters-Rehbach M et al (1984) The analysis of electrode impedances complicated by the presence of a constant phase element. J Electroanal Chem 176:275–295

    Article  CAS  Google Scholar 

  • Chen Z, Appenzeller J, Knoch J et al (2005) The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors. Nano Lett 5:1497–1502

    Article  CAS  PubMed  Google Scholar 

  • Chin CD, Linder V, Sia SK (2007) Lab-on-a-chip devices for global health: past studies and future opportunities. Lab Chip 7:41–57

    Article  CAS  PubMed  Google Scholar 

  • Cockro SL, Chu J, Amorin M et al (2008) A single-molecule nanopore device detects DNA polymerase activity with single-nucleotide resolution. J Am Chem Soc 130:818–820

    Article  Google Scholar 

  • Cohen-Karni T, Qing Q, Li Q et al (2010) Graphene and nanowire transistors for cellular interfaces and electrical recording. Nano Lett 10:1098–1102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dastagir T, Forzani ES, Zhang R et al (2007) Electrical detection of hepatitis C virus RNA on single wall carbon nanotube-field effect transistors. Analyst 132:738–740

    Article  CAS  PubMed  Google Scholar 

  • Dong X, Shi Y, Huang W et al (2010) Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. Adv Mater 22:1–5

    Article  Google Scholar 

  • Effenhauser CS, Bruin GJM, Paulus A et al (1997) Integrated capillary electrophoresis on flexible silicone microdevices: analysis of DNA restriction fragments and detection of single DNA molecules on microchips. Anal Chem 69:3451–3457

    Article  CAS  PubMed  Google Scholar 

  • Estrela P, Migliorato P (2007) Chemical and biological sensors using polycrystalline silicon TFTs. J Mater Chem 17:219–224

    Article  CAS  Google Scholar 

  • Estrela P, Keighley SD, Migliorato P (2007) Field-effect potentiometric biosensors. In: Ozoemena KI (ed) Recent advances in analytical electrochemistry. Transworld Research Network, Kerala, pp 199–230

    Google Scholar 

  • Estrela P, Paul D, Song Q et al (2010) Label-free sub-picomolar protein detection with field-effect transistors. Anal Chem 82:3531–3536

    Article  CAS  PubMed  Google Scholar 

  • Fakunle ES, Fritsch I (2010) Low-temperature co-fired ceramic microchannels with individually addressable screen-printed gold electrodes on four walls for self-contained electrochemical immunoassays. Anal Bioanal Chem 398:2605–2615

    Article  CAS  PubMed  Google Scholar 

  • Graham AHD, Robbins J, Bowen CR et al (2011) Commercialisation of CMOS integrated circuit technology in multi-electrode arrays for neuroscience and cell-based biosensors. Sensors 11:4943–4971

    Article  PubMed Central  PubMed  Google Scholar 

  • Hirschorn B, Orazem ME, Tribollet B et al (2010) Determination of effective capacitance and film thickness from constant-phase-element parameters. Electrochim Acta 55:6218–6227

    Article  CAS  Google Scholar 

  • Hornblower B, Coombs A, Whitaker RD et al (2007) Single-molecule analysis of DNA-protein complexes using nanopores. Nat Methods 4:315–317

    CAS  PubMed  Google Scholar 

  • Hsu CH, Mansfeld F (2001) Concerning the conversion of the constant phase element parameter Y0 into a capacitance. Corrosion 57:747–748

    Article  CAS  Google Scholar 

  • Hu PA, Zhang J, Li L et al (2010) Carbon nanostructure-based field-effect transistors for label-free chemical/biological sensors. Sensors 10:5139–5159

    Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  • Iliescu C, Taylor H, Avram M et al (2012) A practical guide for the fabrication of microfluidic devices using glass and silicon. Biomicrofluid 6:016505

    Article  Google Scholar 

  • Lafleur JP, Kwapiszewski R, Jensen TG (2013) Rapid photochemical surface patterning of proteins in thiolene based microfluidic devices. Analyst 138:845–849

    Article  CAS  PubMed  Google Scholar 

  • Li P, Migliorato P, Estrela P (2012a) Application of field-effect transistors to label-free electrical DNA biosensor arrays. In: Özsöz M (ed) Electrochemical DNA biosensors. Pan Stanford Publishing, Singapore, pp 163–204

    Google Scholar 

  • Li X, Ballerini DR, Shen W (2012b) A perspective on paper-based microfluidics: current status and future trends. Biomicrofluid 6:11301–11303

    Article  Google Scholar 

  • Liana DD, Raguse B, Gooding JJ et al (2012) Recent advances in paper-based sensors. Sensors 12:11505–11526

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu Y, Yuan R, Chai YQ et al (2006) Direct electrochemistry of horseradish peroxidase immobilized on gold colloid/cysteine/nafion-modified platinum disk electrode. Sens Actuat B 115:109–115

    Article  CAS  Google Scholar 

  • Madhivanan P, Krupp K, Hardin J et al (2009) Simple and inexpensive point-of-care tests improve diagnosis of vaginal infections in resource constrained settings. Trop Med Int Health 14:703–708

    Article  PubMed Central  PubMed  Google Scholar 

  • Maehashi K, Katsura T, Kerman K et al (2007) Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors. Anal Chem 79:782–787

    Article  CAS  PubMed  Google Scholar 

  • Martel R, Schmidt T, Shea HR et al (1998) Single- and multi-wall carbon nanotube field-effect transistors. Appl Phys Lett 73:2447–2449

    Article  CAS  Google Scholar 

  • Martinez AW, Phillips ST, Carrilho E et al (2008) Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal Chem 80:3699–3707

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Matsumoto A, Miyahara Y (2013) Current and emerging challenges of field effect transistor based bio-sensing. Nanoscale 5:10702–10718

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto A, Miyahara Y, Kataoka K (2012) Intelligent surfaces for field-effect transistor-based nanobiosensing. In: Grandin H, Textor M (eds) Intelligent surfaces in biotechnology: scientific and engineering concepts, enabling technologies, and translation to bio-oriented applications. Wiley, New York, pp 123–140

    Chapter  Google Scholar 

  • Mattmann M, Helbling T, Durrer L et al (2009) Sub-ppm NO2 detection by Al2O3 contact passivated carbon nanotube field effect transistors. Appl Phys Lett 94:183502

    Article  Google Scholar 

  • Mellors JS, Gorbounov V, Ramsey RS et al (2008) Fully integrated glass microfluidic device for performing high-efficiency capillary electrophoresis and electrospray ionization mass spectrometry. Anal Chem 80:6881–6887

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mellors JS, Jorabchi K, Smith LM et al (2010) Integrated microfluidic device for automated single cell analysis using electrophoretic separation and electrospray ionization mass spectrometry. Anal Chem 82:967–973

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mohanty N, Berry V (2008) Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett 8:4469–4476

    Article  CAS  PubMed  Google Scholar 

  • Novak JP, Snow ES, Houser EJ et al (2003) Nerve agent detection using networks of single walled carbon nanotubes. Appl Phys Lett 83:4026–4028

    Article  CAS  Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  PubMed  Google Scholar 

  • Parsa H, Chin CD, Mongkolwisetwara P et al (2008) Effect of volume- and time-based constraints on capture of analytes in microfluidic heterogeneous immunoassays. Lab Chip 8:2062–2070

    Article  CAS  PubMed  Google Scholar 

  • Peng G, Tisch U, Haick H (2009a) Detection of nonpolar molecules by means of carrier scattering in random networks of carbon nanotubes: toward diagnosis of diseases via breath samples. Nano Lett 9:1362–1368

    Article  CAS  PubMed  Google Scholar 

  • Peng N, Zhang Q, Chow CL et al (2009b) Sensing mechanisms for carbon nanotube based NH3 gas detection. Nano Lett 9:1626–1630

    Article  CAS  PubMed  Google Scholar 

  • Roberts ME, LeMieux MC, Bao Z (2009) Sorted and aligned single-walled carbon nanotube networks for transistor-based aqueous chemical sensors. ACS Nano 10:3287–3293

    Article  Google Scholar 

  • Roman GT, Hlaus T, Bass KJ et al (2005) Sol–gel modified poly(dimethylsiloxane) microfluidic devices with high electroosmotic mobilities and hydrophilic channel wall characteristics. Anal Chem 77:1414–1422

    Article  CAS  PubMed  Google Scholar 

  • Rothberg JM, Hinz W, Rearick TM et al (2011) An integrated semiconductor device enabling non-optical genome sequencing. Nature 475:348–352

    Article  CAS  PubMed  Google Scholar 

  • Schöning MJ, Poghossian A (2002) Recent advances in biologically sensitive field-effect transistors (BioFETs). Analyst 127:1137–1151

    Article  PubMed  Google Scholar 

  • Star A, Tu E, Niemann J et al (2006) Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. Proc Natl Acad Sci U S A 103:921–926

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Taillades G, Valls O, Bratov A et al (1999) ISE and ISFET microsensors based on a sensitive chalcogenide glass for copper ion detection in solution. Sens Actuat B 59:123–127

    Article  CAS  Google Scholar 

  • Tans SJ, Verschueren ARM, Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature 393:49–52

    Article  CAS  Google Scholar 

  • Varghese N, Mogera U, Govindaraj A et al (2009) Binding of DNA nucleobases and nucleosides with graphene. Chemphyschem 10:206–210

    Article  CAS  PubMed  Google Scholar 

  • von Lode P (2005) Point-of-care immunotesting: approaching the analytical performance of central laboratory methods. Clin Biochem 38:591–606

    Article  Google Scholar 

  • Washburn AL, Gunn LC, Bailey RC (2009) Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators. Anal Chem 81:9499–9506

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Williams KA, Veenhuizen PTM, Torre BG et al (2002) Carbon nanotubes with DNA recognition. Nature 420:761–766

    Article  CAS  PubMed  Google Scholar 

  • Wu A, Wang L, Jensen E et al (2010) Modular integration of electronics and microfluidic systems using flexible printed circuit boards. Lab Chip 10:519–521

    Article  CAS  PubMed  Google Scholar 

  • Yager P, Edwards T, Fu E et al (2006) Microfluidic diagnostic technologies for global public health. Nature 442:412–418

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Eitel RE (2012) Biostability of low-temperature co-fired ceramic materials for microfluidic and biomedical devices. Int J Appl Ceram Technol 9:60–66

    Article  Google Scholar 

  • Zhang BD, Quan K, Can EL (2013) Flexible packaging of solid-state integrated circuit chips with elastomeric microfluidics. Nat Sci Rep 3:1–8

    Google Scholar 

Download references

Acknowledgments

S.P. was funded from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 278832 (project ‘hiPAD’).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Estrela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Pathak, S., Estrela, P. (2015). Field-Effect Transistors: Current Advances and Challenges in Bringing Them to Point-of-Care. In: Vestergaard, M., Kerman, K., Hsing, IM., Tamiya, E. (eds) Nanobiosensors and Nanobioanalyses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55190-4_17

Download citation

Publish with us

Policies and ethics