Skip to main content

Cell Migration in Engineered Microstructured Surfaces

  • Chapter
  • First Online:
  • 803 Accesses

Part of the book series: Frontiers of Biomechanics ((FB,volume 1))

Abstract

Cells in vivo physically as well as chemically interact with surrounding extracellular environment and change their behavior. Micro-/nano-topography of the extracellular matrix mechanically affect cell behavior and are expected to have great potential as a non-invasive cue to control such behavior. This chapter explains how the interaction between cells and Extracellular matrix (ECM) topographical features influence cell migration, based on the results of a systematic analysis of cell migration control using a designed microstructured surface. In addition, a design concept for fabricating microstructured surface is provided based on the systematic analysis. The standpoint given here should provide a label free cell separation technique offering significant benefits to biomedical research and applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akobeng AK (2007) Understanding diagnostic tests 3: receiver operating characteristic curves. Acta Paediatr 96(5):644–647. doi:10.1111/j.1651-2227.2006.00178.x

    Article  Google Scholar 

  • Chambers TJ, Thomson BM, Fuller K (1984) Effect of substrate composition on bone resorption by rabbit osteoclasts. J Cell Sci 70:61–71

    Google Scholar 

  • Chehroudi B, Brunette DM (2002) Subcutaneous microfabricated surfaces inhibit epithelial recession and promote long-term survival of percutaneous implants. Biomaterials 23(1):229–237. doi:10.1016/S0142-9612(01)00100-4

  • Clark P, Connolly P, Curtis ASG, Dow JAT, Wilkinson CDW (1987) Topographical control of cell behavior. 1. Simple step cues. Development 99(3):439–448

    Google Scholar 

  • Clark P, Connolly P, Curtis ASG, Dow JAT, Wilkinson CDW (1990) Topographical control of cell behavior. 2. Multiple grooved substrata. Development 108(4):635–644

    Google Scholar 

  • Cortese B, Gigli G, Riehle M (2009) Mechanical gradient cues for guided cell motility and control of cell behavior on uniform substrates. Adv Funct Mater 19(18):2961–2968. doi:10.1002/adfm.200900918

    Article  Google Scholar 

  • Crouch AS, Miller D, Luebke KJ, Hu W (2009) Correlation of anisotropic cell behaviors with topographic aspect ratio. Biomaterials 30(8):1560–1567. doi:10.1016/j.biomaterials.2008.11.041

    Article  Google Scholar 

  • Curtis A, Wilkinson C (1997) Topographical control of cells. Biomaterials 18(24):1573–1583

    Article  Google Scholar 

  • da Silva J, Lautenschlager F, Sivaniah E, Guck JR (2010) The cavity-to-cavity migration of leukaemic cells through 3D honey-combed hydrogels with adjustable internal dimension and stiffness. Biomaterials 31(8):2201–2208. doi:10.1016/j.biomaterials.2009.11.105

    Article  Google Scholar 

  • da Silva J, Lautenschlager F, Kuo CHR, Guck J, Sivaniah E (2011) 3D inverted colloidal crystals in realistic cell migration assays for drug screening applications. Integr Biol 3(12):1202–1206. doi:10.1039/C1ib00065a

    Article  Google Scholar 

  • Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle MO, Herzyk P, Wilkinson CDW, Oreffo ROC (2007) The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater 6(12):997–1003. doi:10.1038/Nmat2013

    Article  Google Scholar 

  • Discher DE, Mooney DJ, Zandstra PW (2009) Growth factors, matrices, and forces combine and control stem cells. Science 324(5935):1673–1677. doi:10.1126/science.1171643

    Article  Google Scholar 

  • Fisher PE, Tickle C (1981) Differences in alignment of normal and transformed cells on glass fibres. Exp Cell Res 131(2):407–410

    Article  Google Scholar 

  • Flemming RG, Murphy CJ, Abrams GA, Goodman SL, Nealey PF (1999) Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials 20(6):573–588

    Article  Google Scholar 

  • Fournier MF, Sauser R, Ambrosi D, Meister JJ, Verkhovsky AB (2010) Force transmission in migrating cells. J Cell Biol 188(2):287–297. doi:10.1083/jcb.200906139

    Article  Google Scholar 

  • Fraser SA, Ting YH, Mallon KS, Wendt AE, Murphy CJ, Nealey PF (2008) Sub-micron and nanoscale feature depth modulates alignment of stromal fibroblasts and corneal epithelial cells in serum-rich and serum-free media. J Biomed Mater Res Part A 86A(3):725–735. doi:10.1002/Jbm.A.31519

    Article  Google Scholar 

  • Frey MT, Tsai IY, Russell TP, Hanks SK, Wang YL (2006) Cellular responses to substrate topography: role of myosin II and focal adhesion kinase. Biophys J 90(10):3774–3782. doi:10.1529/biophysj.105.074526

    Article  Google Scholar 

  • Friedl P, Wolf K (2010) Plasticity of cell migration: a multiscale tuning model. J Cell Biol 188(1):11–19. doi:10.1083/jcb.200909003

    Article  Google Scholar 

  • Ghibaudo M, Trichet L, Le Digabel J, Richert A, Hersen P, Ladoux B (2009) Substrate topography induces a crossover from 2D to 3D behavior in fibroblast migration. Biophys J 97(1):357–368. doi:10.1016/j.bpj.2009.04.024

    Article  Google Scholar 

  • Hamilton DW, Oakley C, Jaeger NAF, Brunette DM (2009) Directional change produced by perpendicularly-oriented microgrooves is microtubule-dependent for fibroblasts and epithelium. Cell Motil Cytoskeleton 66(5):260–271. doi:10.1002/Cm.20354

    Article  Google Scholar 

  • Hu W, Yim EKF, Reano RM, Leong KW, Pang SW (2005) Effects of nanoimprinted patterns in tissue-culture polystyrene on cell behavior. J Vac Sci Technol B 23(6):2984–2989. doi:10.1116/1.2121729

    Article  Google Scholar 

  • Kaiser JP, Reinmann A, Bruinink A (2006) The effect of topographic characteristics on cell migration velocity. Biomaterials 27(30):5230–5241. doi:10.1016/j.biomaterials.2006.06.002

    Article  Google Scholar 

  • Kamioka H, Kameo Y, Imai Y, Bakker AD, Bacabac RG, Yamada N, Takaoka A, Yamashiro T, Adachi T, Klein-Nulend J (2012) Microscale fluid flow analysis in a human osteocyte canaliculus using a realistic high-resolution image-based three-dimensional model. Integr Biol 4(10):1198–1206. doi:10.1039/C2ib20092a

    Article  Google Scholar 

  • Kawano T, Kidoaki S (2011) Elasticity boundary conditions required for cell mechanotaxis on microelastically-patterned gels. Biomaterials 32(11):2725–2733. doi:10.1016/j.biomaterials.2011.01.009

    Article  Google Scholar 

  • Kim DH, Han K, Gupta K, Kwon KW, Suh KY, Levchenko A (2009a) Mechanosensitivity of fibroblast cell shape and movement to anisotropic substratum topography gradients. Biomaterials 30(29):5433–5444. doi:10.1016/j.biomaterials.2009.06.042

    Article  Google Scholar 

  • Kim DH, Seo CH, Han K, Kwon KW, Levchenko A, Suh KY (2009b) Guided cell migration on microtextured substrates with variable local density and anisotropy. Adv Funct Mater 19(10):1579–1586. doi:10.1002/adfm.200801174

    Article  Google Scholar 

  • Kolega J (1986) Effects of mechanical tension on protrusive activity and microfilament and intermediate filament organization in an epidermal epithelium moving in culture. J Cell Biol 102(4):1400–1411

    Article  Google Scholar 

  • Kong YP, Tu CH, Donovan PJ, Yee AF (2013) Expression of Oct4 in human embryonic stem cells is dependent on nanotopographical configuration. Acta Biomater 9(5):6369–6380. doi:10.1016/j.actbio.2013.01.036

    Article  Google Scholar 

  • Kurpinski K, Chu J, Hashi C, Li S (2006) Anisotropic mechanosensing by mesenchymal stem cells. Proc Natl Acad Sci U S A 103(44):16095–16100. doi:10.1073/pnas.0604182103

    Article  Google Scholar 

  • Kwon KW, Choi SS, Lee SH, Kim B, Lee SN, Park MC, Kim P, Hwang SY, Suh KY (2007) Label-free, microfluidic separation and enrichment of human breast cancer cells by adhesion difference. Lab Chip 7(11):1461–1468. doi:10.1039/b710054j

    Article  Google Scholar 

  • Liliensiek SJ, Nealey P, Murphy CJ (2009) Characterization of endothelial basement membrane nanotopography in rhesus macaque as a guide for vessel tissue engineering. Tissue Eng Part A 15(9):2643–2651. doi:10.1089/ten.TEA.2008.0284

    Article  Google Scholar 

  • Lim JY, Donahue HJ (2007) Cell sensing and response to micro- and nanostructured surfaces produced by chemical and topographic patterning. Tissue Eng 13(8):1879–1891. doi:10.1089/ten.2006.0154

    Article  Google Scholar 

  • Lu P, Weaver VM, Werb Z (2012) The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 196(4):395–406. doi:10.1083/jcb.201102147

    Article  Google Scholar 

  • Mahmud G, Campbell CJ, Bishop KJM, Komarova YA, Chaga O, Soh S, Huda S, Kandere-Grzybowska K, Grzybowski BA (2009) Directing cell motions on micropatterned ratchets. Nat Phys 5(8):606–612. doi:10.1038/Nphys1306

    Article  Google Scholar 

  • McMurray RJ, Gadegaard N, Tsimbouri PM, Burgess KV, McNamara LE, Tare R, Murawski K, Kingham E, Oreffo ROC, Dalby MJ (2011) Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency. Nat Mater 10(8):637–644. doi:10.1038/Nmat3058

    Article  Google Scholar 

  • Miyoshi H, Ju JM, Lee SM, Cho DJ, Ko JS, Yamagata Y, Adachi T (2010) Control of highly migratory cells by microstructured surface based on transient change in cell behavior. Biomaterials 31(33):8539–8545. doi: 10.1016/j.biomaterials.2010.07.076

  • Nakaya Y, Sukowati EW, Sheng G (2013) Epiblast integrity requires CLASP and Dystroglycan-mediated microtubule anchoring to the basal cortex. J Cell Biol 202(4):637–651. doi:10.1083/jcb.201302075

    Article  Google Scholar 

  • Nematollahi M, Hamilton DW, Jaeger NJ, Brunette DM (2009) Hexagonal micron scale pillars influence epithelial cell adhesion, morphology, proliferation, migration, and cytoskeletal arrangement. J Biomed Mater Res Part A 91A(1):149–157. doi:10.1002/Jbm.A.32202

    Article  Google Scholar 

  • Nikkhah M, Strobl JS, Peddi B, Agah M (2009) Cytoskeletal role in differential adhesion patterns of normal fibroblasts and breast cancer cells inside silicon microenvironments. Biomed Microdevices 11(3):585–595. doi:10.1007/s10544-008-9268-2

    Article  Google Scholar 

  • Nikkhah M, Strobl JS, De Vita R, Agah M (2010) The cytoskeletal organization of breast carcinoma and fibroblast cells inside three dimensional (3-D) isotropic silicon microstructures. Biomaterials 31(16):4552–4561. doi:10.1016/j.biomaterials.2010.02.034

    Article  Google Scholar 

  • Oakley C, Brunette DM (1993) The sequence of alignment of microtubules, focal contacts and actin filaments in fibroblasts spreading on smooth and grooved titanium substrata. J Cell Sci 106(Pt 1):343–354

    Google Scholar 

  • Okeyo KO, Adachi T, Hojo M (2010) Mechanical regulation of actin network dynamics in migrating cells. J Biomech Sci Eng 5:186–207. doi:10.1016/S0142-9612(01)00100-4

  • Patel AA, Thakar RG, Chown M, Ayala P, Desai TA, Kumar S (2010) Biophysical mechanisms of single-cell interactions with microtopographical cues. Biomed Microdevices 12(2):287–296. doi:10.1007/s10544-009-9384-7

    Article  Google Scholar 

  • Peyton SR, Kim PD, Ghajar CM, Seliktar D, Putnam AJ (2008) The effects of matrix stiffness and RhoA on the phenotypic plasticity of smooth muscle cells in a 3-D biosynthetic hydrogel system. Biomaterials 29(17):2597–2607. doi:10.1016/j.biomaterials.2008.02.005

    Article  Google Scholar 

  • Strobl JS, Nikkhah M, Agah M (2010) Actions of the anti-cancer drug suberoylanilide hydroxamic acid (SAHA) on human breast cancer cytoarchitecture in silicon microstructures. Biomaterials 31(27):7043–7050. doi:10.1016/j.biomaterials.2010.05.023

    Article  Google Scholar 

  • Tan J, Saltzman WM (2002) Topographical control of human neutrophil motility on micropatterned materials with various surface chemistry. Biomaterials 23(15):3215–3225. doi:10.1016/S0142-9612(02)00074-1

  • Titushkin I, Cho M (2007) Modulation of cellular mechanics during osteogenic differentiation of human mesenchymal stem cells. Biophys J 93(10):3693–3702. doi:10.1529/biophysj.107.107797

    Article  Google Scholar 

  • Ulrich TA, de Juan Pardo EM, Kumar S (2009) The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells. Cancer Res 69(10):4167–4174. doi:10.1158/0008-5472.CAN-08-4859

    Article  Google Scholar 

  • Uttayarat P, Toworfe GK, Dietrich F, Lelkes PI, Composto RJ (2005) Topographic guidance of endothelial cells on silicone surfaces with micro- to nanogrooves: orientation of actin filaments and focal adhesions. J Biomed Mater Res Part A 75A(3):668–680. doi:10.1002/Jbm.A.30478

    Article  Google Scholar 

  • Weekes SM, Ogrin FY, Murray WA, Keatley PS (2007) Macroscopic arrays of magnetic nanostructures from self-assembled nanosphere templates. Langmuir 23(3):1057–1060. doi:10.1021/La061396g

    Article  Google Scholar 

  • Wilson CA, Tsuchida MA, Allen GM, Barnhart EL, Applegate KT, Yam PT, Ji L, Keren K, Danuser G, Theriot JA (2010) Myosin II contributes to cell-scale actin network treadmilling through network disassembly. Nature 465(7296):373–377. doi:10.1038/nature08994

    Article  Google Scholar 

  • Wolf K, Friedl P (2011) Extracellular matrix determinants of proteolytic and non-proteolytic cell migration. Trends Cell Biol 21(12):736–744. doi:10.1016/j.tcb.2011.09.006

    Article  Google Scholar 

  • Wolf K, Alexander S, Schacht V, Coussens LM, von Andrian UH, van Rheenen J, Deryugina E, Friedl P (2009) Collagen-based cell migration models in vitro and in vivo. Semin Cell Dev Biol 20(8):931–941. doi:10.1016/j.semcdb.2009.08.005

    Article  Google Scholar 

  • Zweig MH, Campbell G (1993) Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem 39(4):561–577

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Okeyo, K.O., Miyoshi, H., Adachi, T. (2015). Cell Migration in Engineered Microstructured Surfaces. In: Innovative Approaches to Cell Biomechanics. Frontiers of Biomechanics, vol 1. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55163-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55163-8_10

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55162-1

  • Online ISBN: 978-4-431-55163-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics