Skip to main content

Engineering Cellular Assembly for Applications in Regenerative Medicine

  • Chapter
  • First Online:
Engineered Cell Manipulation for Biomedical Application

Part of the book series: Nanomedicine and Nanotoxicology ((NANOMED))

Abstract

In vitro cell culture methods are undergoing a revolutionary transition towards 3D systems that better imitate the complex microenvironment a cell experiences in the body. Cells must be permitted to participate in an intricate communication network via biochemical and mechanical signaling with neighboring cells and key components of the extracellular matrix, something that is inherently lacking in monolayer cultures using petri dishes or flasks. Over the last 2–3 decades, a number of 3D cell culture techniques have been introduced that rely on cell self-organizing capacity such as hanging drops, centrifuged pellets, and suspension culture. However, more recent approaches have emerged to further control cellular organization in 3D. Methods for engineering a directed assembly of cells will yield 3D models that more closely resemble their organ mimics, which would have significant implications in the field of regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Larsen WJ, Sherman LS, Potter SS, Scott WJ (2001) Human embryology. Churchill Livingstone, Philadelphia

    Google Scholar 

  2. Holtzer H (1964) Control of chondrogenesis in the embryo. Biophys J 4:239–250

    Article  CAS  PubMed Central  Google Scholar 

  3. Battler A, Leor J (2007) Stem cell and gene-based therapy: frontiers in regenerative medicine. Springer, New York

    Google Scholar 

  4. Carlson BM (2011) Principles of regenerative biology. Elsevier, Amsterdam

    Google Scholar 

  5. Studer D, Millan C, Ozturk E, Maniura-Weber K, Zenobi-Wong M (2012) Molecular and biophysical mechanisms regulating hypertrophic differentiation in chondrocytes and mesenchymal stem cells. Eur Cell Mater 24:118–135

    Article  CAS  PubMed  Google Scholar 

  6. Hall BK, Miyake T (1995) Divide, accumulate, differentiate: cell condensation in skeletal development revisited. Int J Dev Biol 39:881–894

    CAS  PubMed  Google Scholar 

  7. Cancedda R, Castagnola P, Cancedda F, Dozin B, Quarto R (2000) Developmental control of chondrogenesis and osteogenesis. Int J Dev Biol 44:707–714

    CAS  PubMed  Google Scholar 

  8. Oberlender SA, Tuan RS (1994) Expression and functional involvement of N-cadherin in embryonic limb chondrogenesis. Development 120:177–187

    CAS  PubMed  Google Scholar 

  9. Ichinose S, Tagami M, Muneta T, Sekiya I (2005) Morphological examination during in vitro cartilage formation by human mesenchymal stem cells. Cell Tissue Res 322:217–226

    Article  PubMed  Google Scholar 

  10. Underhill C, Dorfman A (1978) The role of hyaluronic acid in intercellular adhesion of cultured mouse cells. Exp Cell Res 117:155–164

    Article  CAS  PubMed  Google Scholar 

  11. Underhill C (1992) CD44: the hyaluronan receptor. J Cell Sci 103:293–298

    CAS  PubMed  Google Scholar 

  12. Vortkamp A, Lee K, Lanske B, Segre GV, Kronenberg HM, Tabin CJ (1996) Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science 273:613–622

    Article  CAS  PubMed  Google Scholar 

  13. Lanske B, Karaplis AC, Lee K, Luz A, Vortkamp A, Pirro A et al (1996) PTH/PTHrP receptor in early development and Indian hedgehog–regulated bone growth. Science 273:663–666

    Article  CAS  PubMed  Google Scholar 

  14. Johnstone B, Hering T, Caplan A, Goldberg V, Yoo J (1998) In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 238:265

    Article  CAS  PubMed  Google Scholar 

  15. Moscona A (1961) Rotation-mediated histogenetic aggregation of dissociated cells: a quantifiable approach to cell interactions in vitro. Exp Cell Res 22:455–475

    Article  CAS  PubMed  Google Scholar 

  16. Foty R, Steinberg M (2005) The differential adhesion hypothesis: a direct evaluation. Dev Biol 278:255

    Article  CAS  PubMed  Google Scholar 

  17. Shacoori V, Khan N, Saiag B, Rault B (1995) Rat pineal cell aggregates: ultrastructural and functional characteristics. Brain Res Bull 38:215–220

    Article  CAS  PubMed  Google Scholar 

  18. Cameron C, Hu WS, Kaufman DS (2006) Improved development of human embryonic stem cell‐derived embryoid bodies by stirred vessel cultivation. Biotechnol Bioeng 94:938–948

    Article  CAS  PubMed  Google Scholar 

  19. Yoon BS, Yoo SJ, Lee JE, You S, Lee HT, Yoon HS (2006) Enhanced differentiation of human embryonic stem cells into cardiomyocytes by combining hanging drop culture and 5‐azacytidine treatment. Differentiation 74:149–159

    Article  CAS  PubMed  Google Scholar 

  20. Itskovitz-Eldor J, Schuldiner M, Karsenti D, Eden A, Yanuka O, Amit M et al (2000) Differentiation of human embryonic stem cells into embryoid bodies comprising the three embryonic germ layers. Mol Med 6:88–95

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Spence JR, Mayhew CN, Rankin SA, Kuhar MF, Vallance JE, Tolle K et al (2010) Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470:105–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. D'Amour KA, Agulnick AD, Eliazer S, Kelly OG, Kroon E, Baetge EE (2005) Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol 23:1534–1541

    Article  PubMed  Google Scholar 

  23. Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S et al (2008) Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 26:443–452

    Article  CAS  PubMed  Google Scholar 

  24. Rambhatla L, Chiu C-P, Kundu P, Peng Y, Carpenter MK (2003) Generation of hepatocyte-like cells from human embryonic stem cells. Cell Transplant 12:1–11

    Article  PubMed  Google Scholar 

  25. Lancaster MA, Renner M, Martin C-A, Wenzel D, Bicknell LS, Hurles ME et al (2013) Cerebral organoids model human brain development and microcephaly. Nature 501:373–379

    Article  CAS  PubMed  Google Scholar 

  26. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  CAS  PubMed  Google Scholar 

  27. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  28. Kelm J, Timmins N, Brown C, Fussenegger M, Nielsen L (2003) Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnol Bioeng 83:173

    Article  CAS  PubMed  Google Scholar 

  29. Rimann M, Graf-Hausner U (2012) Synthetic 3D multicellular systems for drug development. Curr Opin Biotechnol 23:803–809

    Article  CAS  PubMed  Google Scholar 

  30. Gartner ZJ, Bertozzi CR (2009) Programmed assembly of 3-dimensional microtissues with defined cellular connectivity. Proc Natl Acad Sci U S A 106:4606–4610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nishiguchi A, Yoshida H, Matsusaki M, Akashi M (2011) Rapid construction of three‐dimensional multilayered tissues with endothelial tube networks by the cell‐accumulation technique. Adv Mater 23:3506–3510

    Article  CAS  PubMed  Google Scholar 

  32. Jakab K, Norotte C, Marga F, Murphy K, Vunjak-Novakovic G, Forgacs G (2010) Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication 2:022001

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bratt-Leal AM, Kepple KL, Carpenedo RL, Cooke MT, McDevitt TC (2011) Magnetic manipulation and spatial patterning of multi-cellular stem cell aggregates. Integr Biol 3:1224–1232

    Article  CAS  Google Scholar 

  34. Zamanian B, Masaeli M, Nichol JW, Khabiry M, Hancock MJ, Bae H et al (2010) Interface‐directed self‐assembly of cell‐laden microgels. Small 6:937–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fernandez JG, Khademhosseini A (2010) Micro‐masonry: construction of 3D structures by microscale self‐assembly. Adv Mater 22:2538–2541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tan H, Chu CR, Payne K, Marra KG (2009) Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 30:2499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang D-A, Varghese S, Sharma B, Strehin I, Fermanian S, Gorham J et al (2007) Multifunctional chondroitin sulphate for cartilage tissue–biomaterial integration. Nat Mater 6:385–392

    Article  CAS  PubMed  Google Scholar 

  38. Bhattacharjee M, Miot S, Gorecka A, Singha K, Loparic M, Dickinson S et al (2012) Oriented lamellar silk fibrous scaffolds to drive cartilage matrix orientation: towards annulus fibrosus tissue engineering. Acta Biomater 8:3313–3325

    Article  CAS  PubMed  Google Scholar 

  39. Pescosolido L, Piro T, Vermonden T, Coviello T, Alhaique F, Hennink WE et al (2011) Biodegradable IPNs based on oxidized alginate and dextran-HEMA for controlled release of proteins. Carbohydr Polym 86:208–213

    Article  CAS  Google Scholar 

  40. Francis Suh JK, Matthew HWT (2000) Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21:2589–2598

    Article  CAS  Google Scholar 

  41. Xi Lu J, Prudhommeaux F, Meunier A, Sedel L, Guillemin G (1999) Effects of chitosan on rat knee cartilages. Biomaterials 20:1937–1944

    Article  Google Scholar 

  42. Kato Y, Onishi H, Machida Y (2004) N-succinyl-chitosan as a drug carrier: water-insoluble and water-soluble conjugates. Biomaterials 25:907–915

    Article  CAS  PubMed  Google Scholar 

  43. Augst AD, Kong HJ, Mooney DJ (2006) Alginate hydrogels as biomaterials. Macromol Biosci 6:623–633

    Article  CAS  PubMed  Google Scholar 

  44. Li X, Kong X, Zhang Z, Nan K, Li LL, Wang XH et al (2012) Cytotoxicity and biocompatibility evaluation of N,O-carboxymethyl chitosan/oxidized alginate hydrogel for drug delivery application. Int J Biol Macromol 50:1299–1305

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work was funded by the Swiss National Science Foundation (CR32I3-146338/1), the European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement n0 NMP4-SL-2009-229292, and an AO Foundation startup grant (S-11-60Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcy Zenobi-Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Millan, C., Zenobi-Wong, M. (2014). Engineering Cellular Assembly for Applications in Regenerative Medicine. In: Akashi, M., Akagi, T., Matsusaki, M. (eds) Engineered Cell Manipulation for Biomedical Application. Nanomedicine and Nanotoxicology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55139-3_6

Download citation

Publish with us

Policies and ethics