Skip to main content

Nanoparticle-Based Specific Targeting of Antigen-Presenting Cells for Immunotherapy

  • Chapter
  • First Online:
Engineered Cell Manipulation for Biomedical Application

Part of the book series: Nanomedicine and Nanotoxicology ((NANOMED))

  • 1045 Accesses

Abstract

This chapter will address the use of polymeric nanoparticles as immunomodulators and drug delivery systems that specifically target human antigen-presenting cells (APCs). Providing APCs with either activating or inhibitory signals in parallel to antigenic stimulation enables modulation of immune responses and is an attractive approach in immunotherapy. Poly(γ-glutamic acid) nanoparticles have a potent intrinsic immune stimulatory capacity and trigger dendritic cell (DC) maturation accompanied by upregulation of costimulatory molecules and secretion of T cell-polarizing cytokines. This chapter discusses two different approaches that specifically target APCs, using either allergen- or antibody-loaded poly(γ-glutamic acid) nanoparticles for the purpose of developing novel immunotherapeutic regimens for allergy or cancer, respectively. For instance, loaded nanoparticles can protect the allergen from degradation and enhance internalization and subsequent presentation to specific T cells, while inducing polarizing cytokine responses. Nanoparticles can also be used as focused delivery devices of therapeutic antibodies, relevant for cancer immunotherapy, which enables hyper cross-linking of receptors and enhancement of antitumor responses. Thus, polymeric nanoparticles have several beneficial features that warrant further investigation of their suitability as components of novel immunotherapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sung MH, Park C, Kim CJ, Poo H, Soda K, Ashiuchi M (2005) Natural and edible biopolymer poly-gamma-glutamic acid: synthesis, production, and applications. Chem Rec 5:352–366

    Article  CAS  PubMed  Google Scholar 

  2. Akagi T, Kaneko T, Kida T, Akashi M (2005) Preparation and characterization of biodegradable nanoparticles based on poly(gamma-glutamic acid) with l-phenylalanine as a protein carrier. J Control Release 108:226–236

    Article  CAS  PubMed  Google Scholar 

  3. Akagi T, Kaneko T, Kida T, Akashi M (2006) Multifunctional conjugation of proteins on/into bio-nanoparticles prepared by amphiphilic poly(gamma-glutamic acid). J Biomater Sci 17:875–892

    Article  CAS  Google Scholar 

  4. Broos S, Lundberg K, Akagi T, Kadowaki K, Akashi M, Greiff L, Borrebaeck CA, Lindstedt M (2010) Immunomodulatory nanoparticles as adjuvants and allergen-delivery system to human dendritic cells: Implications for specific immunotherapy. Vaccine 28:5075–5085

    Article  CAS  PubMed  Google Scholar 

  5. Uto T, Wang X, Sato K, Haraguchi M, Akagi T, Akashi M, Baba M (2007) Targeting of antigen to dendritic cells with poly(gamma-glutamic acid) nanoparticles induces antigen-specific humoral and cellular immunity. J Immunol 178:2979–2986

    Article  CAS  PubMed  Google Scholar 

  6. Akagi T, Wang X, Uto T, Baba M, Akashi M (2007) Protein direct delivery to dendritic cells using nanoparticles based on amphiphilic poly(amino acid) derivatives. Biomaterials 28:3427–3436

    Article  CAS  PubMed  Google Scholar 

  7. Wang X, Uto T, Akagi T, Akashi M, Baba M (2007) Induction of potent CD8+ T-cell responses by novel biodegradable nanoparticles carrying human immunodeficiency virus type 1 gp120. J Virol 81:10009–10016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Okamoto S, Yoshii H, Akagi T, Akashi M, Ishikawa T, Okuno Y, Takahashi M, Yamanishi K, Mori Y (2007) Influenza hemagglutinin vaccine with poly(gamma-glutamic acid) nanoparticles enhances the protection against influenza virus infection through both humoral and cell-mediated immunity. Vaccine 25:8270–8278

    Article  CAS  PubMed  Google Scholar 

  9. Matsuo K, Yoshikawa T, Oda A, Akagi T, Akashi M, Mukai Y, Yoshioka Y, Okada N, Nakagawa S (2007) Efficient generation of antigen-specific cellular immunity by vaccination with poly(gamma-glutamic acid) nanoparticles entrapping endoplasmic reticulum-targeted peptides. Biochem Biophys Res Commun 362:1069–1072

    Article  CAS  PubMed  Google Scholar 

  10. Yamaguchi S, Tatsumi T, Takehara T, Sasakawa A, Yamamoto M, Kohga K, Miyagi T, Kanto T, Hiramastu N, Akagi T, Akashi M, Hayashi N (2010) EphA2-derived peptide vaccine with amphiphilic poly(gamma-glutamic acid) nanoparticles elicits an anti-tumor effect against mouse liver tumor. Cancer Immunol Immunother 59:759–767

    Article  CAS  PubMed  Google Scholar 

  11. Mazzoni A, Segal DM (2004) Controlling the Toll road to dendritic cell polarization. J Leukoc Biol 75:721–730

    Article  CAS  PubMed  Google Scholar 

  12. Broos S, Sandin LC, Apel J, Totterman TH, Akagi T, Akashi M, Borrebaeck CA, Ellmark P, Lindstedt M (2012) Synergistic augmentation of CD40-mediated activation of antigen-presenting cells by amphiphilic poly(gamma-glutamic acid) nanoparticles. Biomaterials 33:6230–6239

    Article  CAS  PubMed  Google Scholar 

  13. Lindstedt M, Johansson-Lindbom B, Borrebaeck CA (2002) Global reprogramming of dendritic cells in response to a concerted action of inflammatory mediators. Int Immunol 14:1203–1213

    Article  CAS  PubMed  Google Scholar 

  14. Sallusto F, Lanzavecchia A, Mackay CR (1998) Chemokines and chemokine receptors in T-cell priming and Th1/Th2-mediated responses. Immunol Today 19:568–574

    Article  CAS  PubMed  Google Scholar 

  15. Visintin A, Mazzoni A, Spitzer JH, Wyllie DH, Dower SK, Segal DM (2001) Regulation of Toll-like receptors in human monocytes and dendritic cells. J Immunol 166:249–255

    Article  CAS  PubMed  Google Scholar 

  16. Sharp FA, Ruane D, Claass B, Creagh E, Harris J, Malyala P, Singh M, O’Hagan DT, Petrilli V, Tschopp J, O’Neill LA, Lavelle EC (2009) Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. Proc Natl Acad Sci U S A 106:870–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Seong SY, Matzinger P (2004) Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat Rev Immunol 4:469–478

    Article  CAS  PubMed  Google Scholar 

  18. Uto T, Akagi T, Yoshinaga K, Toyama M, Akashi M, Baba M (2011) The induction of innate and adaptive immunity by biodegradable poly(gamma-glutamic acid) nanoparticles via a TLR4 and MyD88 signaling pathway. Biomaterials 32:5206–5212

    Article  CAS  PubMed  Google Scholar 

  19. Meiler F, Klunker S, Zimmermann M, Akdis CA, Akdis M (2008) Distinct regulation of IgE, IgG4 and IgA by T regulatory cells and toll-like receptors. Allergy 63:1455–1463

    Article  CAS  PubMed  Google Scholar 

  20. Del Prete G, De Carli M, Almerigogna F, Giudizi MG, Biagiotti R, Romagnani S (1993) Human IL-10 is produced by both type 1 helper (Th1) and type 2 helper (Th2) T cell clones and inhibits their antigen-specific proliferation and cytokine production. J Immunol 150:353–360

    PubMed  Google Scholar 

  21. Levin M, Rydnert F, Kallstrom E, Tan LW, Wormald PJ, Lindstedt M, Greiff L, Ohlin M (2013) Phl p 1-specific human monoclonal IgE and design of a hypoallergenic group 1 grass pollen allergen fragment. J Immunol 191:551–560

    Article  CAS  PubMed  Google Scholar 

  22. De Souza Reboucas J, Esparza I, Ferrer M, Sanz ML, Irache JM, Gamazo C (2012) Nanoparticulate adjuvants and delivery systems for allergen immunotherapy. J Biomed Biotechnol 2012:474605

    Article  PubMed  PubMed Central  Google Scholar 

  23. Brewer JM (2006) (How) do aluminium adjuvants work? Immunol Lett 102:10–15

    Article  CAS  PubMed  Google Scholar 

  24. Gupta RK (1998) Aluminum compounds as vaccine adjuvants. Adv Drug Deliv Rev 32:155–172

    Article  CAS  PubMed  Google Scholar 

  25. Grun JL, Maurer PH (1989) Different T helper cell subsets elicited in mice utilizing two different adjuvant vehicles: the role of endogenous interleukin 1 in proliferative responses. Cell Immunol 121:134–145

    Article  CAS  PubMed  Google Scholar 

  26. O’Donnell MA, Luo Y, Hunter SE, Chen X, Hayes LL, Clinton SK (2004) Interleukin-12 immunotherapy of murine transitional cell carcinoma of the bladder: dose dependent tumor eradication and generation of protective immunity. J Urol 171:1330–1335

    Article  PubMed  Google Scholar 

  27. Davies CC, Mak TW, Young LS, Eliopoulos AG (2005) TRAF6 is required for TRAF2-dependent CD40 signal transduction in nonhemopoietic cells. Mol Cell Biol 25:9806–9819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Haswell LE, Glennie MJ, Al-Shamkhani A (2001) Analysis of the oligomeric requirement for signaling by CD40 using soluble multimeric forms of its ligand, CD154. Eur J Immunol 31:3094–3100

    Article  CAS  PubMed  Google Scholar 

  29. Reyes-Moreno C, Girouard J, Lapointe R, Darveau A, Mourad W (2004) CD40/CD40 homodimers are required for CD40-induced phosphatidylinositol 3-kinase-dependent expression of B7.2 by human B lymphocytes. J Biol Chem 279:7799–7806

    Article  CAS  PubMed  Google Scholar 

  30. Li F, Ravetch JV (2011) Inhibitory Fcgamma receptor engagement drives adjuvant and anti-tumor activities of agonistic CD40 antibodies. Science 333:1030–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. White AL, Chan HT, Roghanian A, French RR, Mockridge CI, Tutt AL, Dixon SV, Ajona D, Verbeek JS, Al-Shamkhani A, Cragg MS, Beers SA, Glennie MJ (2011) Interaction with FcgammaRIIB is critical for the agonistic activity of anti-CD40 monoclonal antibody. J Immunol 187:1754–1763

    Article  CAS  PubMed  Google Scholar 

  32. Trinchieri G (2003) Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 3:133–146

    Article  CAS  PubMed  Google Scholar 

  33. Li F, Ravetch JV (2012) Apoptotic and antitumor activity of death receptor antibodies require inhibitory Fcgamma receptor engagement. Proc Natl Acad Sci U S A 109:10966–10971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nimmerjahn F, Ravetch JV (2012) Translating basic mechanisms of IgG effector activity into next generation cancer therapies. Cancer Immun 12:13

    PubMed  PubMed Central  Google Scholar 

  35. Fransen MF, Sluijter M, Morreau H, Arens R, Melief CJ (2011) Local activation of CD8 T cells and systemic tumor eradication without toxicity via slow release and local delivery of agonistic CD40 antibody. Clin Cancer Res 17:2270–2280

    Article  CAS  PubMed  Google Scholar 

  36. Kwong B, Liu H, Irvine DJ (2011) Induction of potent anti-tumor responses while eliminating systemic side effects via liposome-anchored combinatorial immunotherapy. Biomaterials 32:5134–5147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jackaman C, Lew AM, Zhan Y, Allan JE, Koloska B, Graham PT, Robinson BW, Nelson DJ (2008) Deliberately provoking local inflammation drives tumors to become their own protective vaccine site. Int Immunol 20:1467–1479

    Article  CAS  PubMed  Google Scholar 

  38. Ahonen CL, Doxsee CL, McGurran SM, Riter TR, Wade WF, Barth RJ, Vasilakos JP, Noelle RJ, Kedl RM (2004) Combined TLR and CD40 triggering induces potent CD8+ T cell expansion with variable dependence on type I IFN. J Exp Med 199:775–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sorensen MR, Holst PJ, Steffensen MA, Christensen JP, Thomsen AR (2010) Adenoviral vaccination combined with CD40 stimulation and CTLA-4 blockage can lead to complete tumor regression in a murine melanoma model. Vaccine 28:6757–6764

    Article  CAS  PubMed  Google Scholar 

  40. Nowak AK, Robinson BW, Lake RA (2003) Synergy between chemotherapy and immunotherapy in the treatment of established murine solid tumors. Cancer Res 63:4490–4496

    CAS  PubMed  Google Scholar 

  41. Hill SC, Youde SJ, Man S, Teale GR, Baxendale AJ, Hislop A, Davies CC, Luesley DM, Blom AM, Rickinson AB, Young LS, Eliopoulos AG (2005) Activation of CD40 in cervical carcinoma cells facilitates CTL responses and augments chemotherapy-induced apoptosis. J Immunol 174:41–50

    Article  CAS  PubMed  Google Scholar 

  42. Buhtoiarov IN, Lum HD, Berke G, Sondel PM, Rakhmilevich AL (2006) Synergistic activation of macrophages via CD40 and TLR9 results in T cell independent antitumor effects. J Immunol 176:309–318

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malin Lindstedt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Lindstedt, M., Broos, S. (2014). Nanoparticle-Based Specific Targeting of Antigen-Presenting Cells for Immunotherapy. In: Akashi, M., Akagi, T., Matsusaki, M. (eds) Engineered Cell Manipulation for Biomedical Application. Nanomedicine and Nanotoxicology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55139-3_13

Download citation

Publish with us

Policies and ethics