Skip to main content

MRI Diagnosis in Other Dementias

  • Chapter
  • First Online:

Abstract

The role of neuroradiologists in the diagnosis of dementia is to identify the wide range of disorders causing dementia through diagnostic imaging in patients clinically exhibiting cognitive impairments, and provide information that directly contributes to their treatment, care, and nursing to clinical workers. The diseases included in dementia are diverse and include degenerative dementia, cerebrovascular dementia, idiopathic normal pressure hydrocephalus, metabolic disorders, poisoning, encephalitis, and encephalopathy, and the diagnostic process markedly differs according to the disease. It is important to diagnose diseases that can be cured and to evaluate images independently of the clinical diagnosis. Images need to be evaluated from multiple viewpoints by taking clinical information from the patient, physicians at clinical departments, local doctors, nurses, care staff, and family as well as information obtained by multiple modalities into consideration.

One aspect of dementia is the long duration of disease. We are now focusing on how to diagnose dementia early and correctly through the application of advanced medical technologies; however, for this to succeed, efforts by all of society for an early diagnosis are necessary rather than “making premature judgments about disorders and diagnosing them accordingly.” Furthermore, diagnostic imaging is often difficult to perform when examining patients with a long clinical course or in an advanced stage due to problems unique to older people. Encounters with patients with Alzheimer’s disease (AD) complicated by cerebrovascular disease (CVD) and Lewy body disease (DLB) are not rare in clinical practice.

We herein presented the imaging findings of senile tauopathy as an important disease causing dementia, and discussed topics regarding a wide variety of diseases causing dementia in which imaging findings are key for a differential diagnosis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Braak H, Braak E. Argyrophilic grains: characteristic pathology of cerebral cortex in cases of adult onset dementia without Alzheimer changes. Neurosci Lett. 1987;76:124–7.

    Article  CAS  PubMed  Google Scholar 

  2. Saito Y, Ruberu NN, Sawabe M, et al. Staging of argyrophilic grains: an-age associated tauopathy. J Neuropathol Exp Neurol. 2004;63:911–8.

    Article  PubMed  Google Scholar 

  3. Saito Y, Yamazaki M, Kanazawa I, et al. Severe involvement of the ambient gyrus in a case of dementia with argyrophilic grain disease. J Neurol Sci. 2002;196:71–5.

    Article  PubMed  Google Scholar 

  4. Saito Y, Murayama S. Neuropathology of mild cognitive impairment. Neuropathology. 2007;27:578–84.

    Article  PubMed  Google Scholar 

  5. Tokumaru AM, Saito Y, Murayama S. Dementia with Grains. In: Matsuda H, Asada T, editors. Imaging diagnosis of dementia, 2nd ed. Osaka: Nagai Shoten; 2010. p. 284–293.

    Google Scholar 

  6. Adachi T, Satito Y, Hatsuta H, et al. Neuropathologica asymmetry in argyrophilic grain disease. J Neuropathol Exp Neurol. 2010;69:737–44.

    Article  PubMed  Google Scholar 

  7. Murayama S, Saito Y, Adachi T. Degenerative disease, Argyrophilic grain disease. Nippon Rinsho. 2014.03;supple II:46–50.

    Google Scholar 

  8. Verhoeff NPLG, Wilson AA, Takeshita S, et al. In-vivo imaging of Alzheimer’s disease β-amyloid with [11C] SB-13 PET. Am J Geriatr Psychiatry. 2004;12:584–95.

    PubMed  Google Scholar 

  9. Okamura N, Suemoto T, Shinomitsu T, et al. A novel imaging probe for in vivo detection of neuritic and diffuse amyloid plaques in the brain. J Mol Neurosci. 2004;24:247–55.

    Google Scholar 

  10. Matsuda H, Mizumura S, Nagao T, et al. Automatic discrimination between very early Alzheimer disease and controls using an easy X-score imaging system for multicenter brain perfusion single-photon emission tomography. AJNR. 2007;28:731–6.

    CAS  PubMed  Google Scholar 

  11. Waragai M, Yamada T, Matuda H. Evaluation of brain perfusion SPECT using an easy Z-score imaging system (eZIS) as an adjunct to early-diagnosis of neurodegenerative diseases. J Neurol Sci. 2007;260:57–64.

    Article  PubMed  Google Scholar 

  12. Waragai M, Mizumura S, Yamada T, et al. Differentiation of early-stage Alzheimer’s disease from other types of dementia using brain perfusion single photon emission computed tomography with easy X-score imaging system analysis. Dement Geriatr Cogn Disord. 2008;26:547–55.

    Article  CAS  PubMed  Google Scholar 

  13. Yamada M, Itoh Y, Otomo E, et al. Dementia of the Alzheimer type and related demenitas in the aged: DAT subgroups and senile dementia of neurofibrillary tangle type. Neuropathlogy. 1996;16:89–98.

    Article  Google Scholar 

  14. Yamada M. Senile dementia of the neurofibrillary tangle type (tangle only dementia); The neuropathological criteria and clinical guidelines for the diagnosis. Neuropathology. 2003;23:311–7.

    Article  PubMed  Google Scholar 

  15. Yamada M, Ito Y. Senile Dementia of the NFT Type (ND-NFT). In Matsuda H, Asada T, editors. Neuroimaging of Dementia, 2nd ed. Osaka: Nagai Shoten; 2010. p.278–283.

    Google Scholar 

  16. Ulrich J, Spillantini MG, Goedert M, et al. Abundunt neurofibrillary tangles without senile plaques in a subset of patients with senile dementia. Neurodegeneration. 1992;1:257–64.

    Google Scholar 

  17. Crary JF, Trojanowski JQ, Schneider JA, et al. Primary age-related tauopathy (PART): a common patholofy associated with human aging. Acta Neuropathol. 2014;128:755–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Duyckaerts C, Braak H, Brion J-P, et al. PART is part of Alzheimer disease. Acta Neuropathol. 2015;129:749–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Saito Y, Tokumaru AM, Kanemaru K, et al. Diagnostic point of senile tauopathy Japanese. J of Geriatric Psychiatry. 2011;22(Suppl 1):36–44.

    Google Scholar 

  20. Matsuda H, et al. Automatic voxel-based morphometry of structural MRI by SPM8 puls diffeomorphic anatomic registration through exponentiated lie aglbra improves the diagnosis of probable Alxheimer disease. AJNR. 2012;33:1109–14.

    Article  CAS  PubMed  Google Scholar 

  21. Steele JC, Richardson JC, Olszewski J. Progressive supranuclear palsy. A heterogeneous degeneration involving the brain stem, basal ganglia and cerebellum with vertical supranuclear gaze and pseudobulbar palsy, nuchal dystonia and dementia. Arch Neurol. 1964;10:333–59.

    Article  CAS  PubMed  Google Scholar 

  22. Litvan I, Mangone CA, McKee A, et al. Natural history of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome) and clinical predictors of survival: a clinicopathological study. J Neurol Neurosurg Psychiatry. 1996;60:615–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Josephs KA, Dickson DW. Diagnostic accuracy of progressive supranuclear palsy in the Society for Progressive Supranuclear Palsy brain bank. Mov Disord. 2003;18:1018–26.

    Article  PubMed  Google Scholar 

  24. Donker Kaat L, Boon AJ, Kamphorst W, et al. Frontal presentation in progressive supranuclear palsy. Neurology. 2007;69:723–9.

    Article  CAS  PubMed  Google Scholar 

  25. Williams DR, Lees AJ. Progressive supranuclear palsy:clinicopathological concepts and diagnostic challenges. Lancet Neurol. 2009;8:270–9.

    Article  PubMed  Google Scholar 

  26. Kato N, Arai K, Hattori T. Study of the rostral midbrain atrophy in progressive supranuclear palsy. J Neurol Sci. 2003;210:57–60.

    Article  PubMed  Google Scholar 

  27. Oba H, Yagishita A, Terada H, et al. New and reliable MRI diagnosis For progressive supranuclear palsy. Neurology. 2005;64:2050–5.

    Article  CAS  PubMed  Google Scholar 

  28. Adachi M, Kawanami T, Ohshima H, et al. Morning glory sign: a particular MR finding in progressive supranuclear palsy. Magn Reson Med Sci. 2004;3:125–32.

    Article  PubMed  Google Scholar 

  29. Paviour DC, Price SL, Stevens JM, et al. Quantitative MRI measurement of superior cerebellar peduncle in progressive supranuclear palsy. Neurology. 2005;64:675–9.

    Article  CAS  PubMed  Google Scholar 

  30. Stamelou M, Knake S, Oertel WH, et al. Magnetic resonance imaging in progressive supranuclear palsy. J Neurol. 2011;258:549–58.

    Article  CAS  PubMed  Google Scholar 

  31. Kataoka H, Tonomura Y, Taoka T, et al. Signal changes of superior cerebellar peduncle on fluid-attenuated infersion recobery in progressive supranuclear palsy. Parkinsonism Relat Disord. 2008;14:63–5.

    Article  PubMed  Google Scholar 

  32. Shi HC, Zhong JG, Pan PL, et al. Gray matter atrophy in progressive supranuclear palsy: meta-analysis of voxel-based morphometry studies. Neurol Sci. 2013;34:1049–55.

    Article  PubMed  Google Scholar 

  33. Yang J, Shao N, Li J, Shang H. Voxelwise meta-analysis of white matter abnormalities in progressive supranuclear palsy. Neurol Sci. 2014;35:7–14.

    Article  PubMed  Google Scholar 

  34. Josephs KA, Whitwell JL, Dickson DW, et al. Voxel-based morphometry in autopsy proven PSP and CBD. Neurobiol Aging. 2008;29:280–9.

    Article  PubMed  Google Scholar 

  35. Kaasinen V, Kangassalo N, Gardberg M, Iet a. Midbrain-to-pons ratio in autopsy-confirmed progressive supranuclear palsy: replication in an independent cohort. Neurol Sci. 2015;36:1251–3.

    Article  PubMed  Google Scholar 

  36. Agosta F, et al. Diffuision tensor MRI contributes to differentiate Richardson’s syndrome from PSP-parkinsonism. Neurobiol Aging. 2012;33:2817–26.

    Article  PubMed  Google Scholar 

  37. Whitewell JL, Master AV, Avula R, et al. Clinical correlates of white matter tract degeneration in progressive supranuclear palsy. Arch Neurol. 2011;68:753–60.

    Google Scholar 

  38. Canu E, Agosta F, Baglio F, et al. Diffusion tensor magnetic resonance imaging tractography in progressive supranuclear palsy. Mov Disord. 2011;26:1752–5.

    Article  PubMed  Google Scholar 

  39. Sakurai K, Kawaguchi T, Kawai T, et al. Usefulness of 3D-PRESTO imaging in evaluating putaminal abnormality in parkinsonian variant of multiple system atrophy. Neuroradiology. 2010;52:809–14.

    Article  PubMed  Google Scholar 

  40. Sakurai K, Tokumaru AM, Nakatsuka T, et al. Imaging spectrum of sporadic cerebral amyloid angiopathy: multifaceted features of a single pathological condition. Insights Imaging. 2014;5:375–85.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gupta D, Saini J, Kesavadas C, et al. Utility of susceptibility-weighted MRI in differentiating Parkinson's disease and atypical parkinsonism. Neuroradiology. 2010;52:1087–94.

    Article  PubMed  Google Scholar 

  42. Sakurai K, Tokumaru AM, Shimoji K, et al. Beyond the midbrain atrophy: wide spectrum of structural MRI finding in cases of pathologically proven progressive supranuclear palsy. Neuroradiology. 2017;59(5):431–43.

    Article  PubMed  Google Scholar 

  43. Meijer FJ, van Rumund A, Fasen BA, et al. Susceptibility-weighted imaging improves the diagnostic accuracy of 3T brain MRI in the work-up of parkinsonism. Am J Neuroradiol. 2015;36:454–60.

    Article  CAS  PubMed  Google Scholar 

  44. Agosta F, Kostić VS, Galantucci S, et al. The in vivo distribution of brain tissue loss in Richardson's syndrome and PSP-parkinsonism: a VBM-DARTEL study. Eur J Neurosci. 2010;32:640–7.

    Google Scholar 

  45. Josephs KA, Eggers SD, Jack CR Jr, et al. Neuroanatomical correlates of the progressive supranuclear palsy corticobasal syndrome hybrid. Eur J Neurol. 2012;19:1440–6.

    Article  CAS  PubMed  Google Scholar 

  46. Focke NK, Helms G, Scheewe S, et al. Individual voxel-based subtype prediction can differentiate progressive supranuclear palsy from idiopathic Parkinson syndrome and healthy controls. Hum Brain Mapp. 2011;32:1905–15.

    Article  PubMed  Google Scholar 

  47. Sakurai K, Imabayashi E, Tokumaru AM, et al. The feasibility of white matter volume reduction analysis using SPM8 plus DARTEL for the diagnosis of patients with clinically diagnosed corticobasal syndrome and Richardson's syndrome. Neuroimage Clin. 2014;7:605–10.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Williams DR, de Silva R, Paviour DC, et al. Characteristics of two distinct clinical phenotypes in pathologically proven progressive supranuclear palsy: Richardson’s syndrome and PSP-parkinsonism. Brain. 2005;128:1247–58.

    Article  PubMed  Google Scholar 

  49. Longoni G, Agosta F, Kostić VS, et al. MRI measurements of brainstem structures in patients with Richardson's syndrome, progressive supranuclear palsy-parkinsonism, and Parkinson’s disease. Mov Disord. 2011;26:247–55.

    Article  PubMed  Google Scholar 

  50. Matsuo H, Takashima H, Kishikawa M, Kinoshita I, Mori M, Tsujihata M, Nagataki S. Pure akinesia: an atypical manifestation of progressive supranuclear palsy. J Neurol Neurosurg Psychiatry. 1991;54:397–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yagishita A, Oda M. Progressive supranuclear palsy: MRI and pathological findings. Neuroradiology. 1996;38:S60–6.

    Article  PubMed  Google Scholar 

  52. Hong JY, Yun HJ, Sunwoo MK, Ham JH, Lee JM, Sohn YH, Lee PH. Comparison of regional brain atrophy and cognitive impairment between pure akinesia with gait freezing and Richardson's syndrome. Front Aging Neurosci. 2015;7:180.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Mochizuki A, Ueda Y, Komatsuzaki Y, et al. Progressive supranuclear palsy presenting with primary progressive aphasia--clinicopathological report of an autopsy case. Acta Neuropathol. 2003;105:610–4.

    CAS  PubMed  Google Scholar 

  54. Santos-Santos MA, Mandelli ML, Binney RJ, et al. Features of patients with nonfluent/agrammatic primary progressive aphasia with underlying progressive supranuclear palsy pathology or corticobasal degeneration. JAMA Neurol. 2016;73:733–42.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Koyama M, Yagishita A, Nakata Y, et al. Imaging of corticobasal degeneration syndrome. Neuroradiology. 2007;49:905–12.

    Article  PubMed  Google Scholar 

  56. Josephs KA, Duffy JR, Strand EA, et al. Clinicopathological and imaging correlates of progressive aphasia and apraxia of speech. Brain. 2006;129(Pt 6):1385–98.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Rebeiz JJ, Kolodny EH, Richardson EP Jr. Corticodentatonigral degeneration with neuronal achromasia: a progressive disorder in late adult life. Trans Am Neurol Assoc. 1967;92:23–6.

    CAS  PubMed  Google Scholar 

  58. Dickson DW, Bergeron C, Chin SS, et al. Coricobasal degeneration. Brain. 1989;112:1171–92.

    Article  Google Scholar 

  59. Boeve BF, Maraganore DM, Parisi JE, et al. Pathologic heterogeneity in clinically diagnosed corticobasal degeneration. Neurology. 1999;53:795–800.

    Article  CAS  PubMed  Google Scholar 

  60. Cordato NJ, Halliday GM, McCann H, et al. Corticobasal syndrome with tau pathology. Mov Disord. 2001;16:656–67.

    Article  CAS  PubMed  Google Scholar 

  61. Boeve BF, Lang AE, Litvan I. Corticobasal degeneration and its relationship to progressive supranuclear palsy and frontotemporal dementia. Ann Neurol. 2003;54:S15–9.

    Article  PubMed  Google Scholar 

  62. Armstrong MJ, Litvan I, Lang AE, et al. Criteria for the diagnosis of corticobasal degeneration. Neurologyn. 2013;80:496–503.

    Article  Google Scholar 

  63. Grimes DA, lang AE, Bergeron CB. Dementia as the most common presentation of cortical-basal ganglionic degeneration. Neurology. 1999;53:1969–74.

    Article  CAS  PubMed  Google Scholar 

  64. Murray R, Neumann M, Forman MS, et al. Cognitive and motor assessment in autopsy-proven corticobasal degeneration. Neurology. 2007;68:1274–83.

    Article  CAS  PubMed  Google Scholar 

  65. Se L, Rabinovici GD, Mayo MC, et al. Clinicopathological correlations in coricobasal degeneration. Ann Neurol. 2011;70:327–40.

    Article  Google Scholar 

  66. Tokumaru AM, Saito Y, Murayma S, et al. Imaging-pathologic correlation in corticobasal degeneration. AJNR. 2009;30:1884–92.

    Article  CAS  PubMed  Google Scholar 

  67. Sakurai K, Imabayashi E, Tokumaru AM, et al. The feasibility of white matter volume reduction analysis using plus DARTEL for the diagnosis of patients with clinically diagnosed corticobasal syndrome and Richardson’s syndrome. Neuroimage: Clin. 2015;17:605–10.

    Article  Google Scholar 

  68. Whitwell JL, Jack CR Jr, Boeve BF, et al. Imaging correlates of pathology in corticobasal syndrome. Neurology. 2010;75:1879–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Whitwell JL, Jack CR Jr, Parisi JE, et al. Imaging signatures of molecular pathology in behavioral variant frontotemporal demential. J Mol Neurosci: MN. 2011;45:372–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Erbetta A, Mandelli ML, Savoiardo M, et al. Diffusion tensor imaging shows different topographic involvement of the thalamus in progressive supranuclear palsy and corticobasal degeneration. AJNR. 2009;30:1482–7.

    Article  CAS  PubMed  Google Scholar 

  71. Probst A, Taylor KI, Tolnay M. Hippocampal sclerosis dementia; a reapparaisal. Acta Neuropathol. 2007;114:335–45.

    Article  PubMed  Google Scholar 

  72. Ala TA, Geh GO, Frey WH 2nd. Pure hippocampal sclerosis; a rare cause of dementia mimicking Alzheimer’s disease. Neurology. 2000;54:843–8.

    Article  CAS  PubMed  Google Scholar 

  73. Nelson PT, Schmitt FA, Kin Y, et al. Hippocampal sclerosis in advanced age: clinical and pathological features. Brain. 2011;134:1506–18.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Brenowitz WE, Monsell SE, Schmitt FA, et al. Hippocampal sclerosis of aging is a key Alzheimer’s disease mimic: clinical-pathologic correlations and comparisons with both Alzheimer’s disease and non-tauopthic frontotemporal lobar degeneration. J Alzheimers Dis. 2014;39:691–702.

    PubMed  PubMed Central  Google Scholar 

  75. Nelson PT, Smith CD, Abner EL, et al. Hippocampal sclerosis of aging, a prevalent and high-morbidity brain disease. Acta Neuropathol. 2013;126:161–77.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Pao WC, Dickson DW, Crook JE, et al. Hippocampal sclerosis in the elderly: genetic and pathologic findings, some mimicking Alzheimer disease clinically. Alzheimer Dis Assoc Disord. 2011;25:364–8.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Zarow C, Weiner MW, Ellis WG, Chui HC. Prevalence, laterality, and comorbidity of hippocampal sclerosis in an autopsy sample. Brain Behav. 2012;2:435–42.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Schneider JA, Aggarwal NT, Barnes L, et al. The neuropathology of older persons with and without dementia from community versus clinic cohorts. J Alzheimers Dis. 2009;18:691–701.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Tokumaru AM. Hippocampal sclerosis dementia (HSD). In: Matuda H, Asada T,. editors. Kouyomu Ninchishou genninn sindnannnotameno nougazou (in Japanese). Tokyo: Person-shobop; 2015. p. 272-279

    Google Scholar 

  80. Faught E, Richman J, Martin R, et al. Incidence and prevalence of epilepsy among older US Medicare beneficiaries. Neurology. 2012;78:448–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Leppik IE. Epilepsy in the elderly. Epilepsia. 2006;47(Suppl 1):65–70.

    Article  PubMed  Google Scholar 

  82. Adams RD, Fisher CM, Hakim S, et al. Symptomatic occult hydrocephalus with normal cerebrospinal fluid pressure, a treatable syndrome. N Engl J Med. 1965;273:117–26.

    Article  CAS  PubMed  Google Scholar 

  83. Hakim S, Adams RD. The special clinical problem of symptomatic hydrocephalus iwht normal cerebrospinal fluid pressure. J Neurol Sci. 1965;273:307–27.

    Article  Google Scholar 

  84. Vassilouthis J. The syndrome normal-pressure hydrocephalu. J Neurosurg. 1984;61:501–9.

    Article  CAS  PubMed  Google Scholar 

  85. Ishikawa M, Hashimoto M, Kuwana N, et al. Guidelines for management of idiopathic normal pressure Hydrocephalus, the Japanese Society of Normal Pressure Hydrocephalus. Neurol Med Chir (Tokyo). 2008;48(Suppl):S1–S23.

    Article  Google Scholar 

  86. Mori E, Ishikawa M, Kato T, et al. iNPH guideline guidelines for management of idiopathic normal pressure hydrocephalus: second edition. Neurol Med Chir (Tokyo). 2012;52:775–809.

    Article  Google Scholar 

  87. Marmarou A, Bergsneider M, Relkin N, Klinge P, Black PM. Development of guidelines for idiopathic normal-pressure hydrocephalus: introduction. Neurosurgery. 2005;57(Suppl):S1–3.

    PubMed  Google Scholar 

  88. Rekin N, Marmarou A, Klinge P, et al. Diagnosing idiopathic normal-pressure hydrocephalus. Neurosurgery. 2005;57(Suppl):S4–16.

    Google Scholar 

  89. Evans WA. An encephalographic ratio for estimating ventricular enlargement and cerebral atrophy. Arch Neurol Psychiarty. 1942;47:931–7.

    Article  Google Scholar 

  90. Kitagaki H, Mori E, Ishii K, et al. CSF spaces in idiopathic normal pressure hydrocephalus: morphology and volumetry. AJNR. 1998;19:1277–84.

    CAS  PubMed  Google Scholar 

  91. Hashimoto M, Ishikawa M, Mori E, et al. Study of INPH on neurological improvement (SINPHONI). Diagnosis of idiopathic normal pressure hydrocephalus is supported by MRI-based scheme: a prospective cohort study. Cerebrospinal Fliuid Res. 2010;7:18.

    Article  Google Scholar 

  92. Sasaki M, Honda S, Yuasa T, et al. Narrow CSF space at high convexity and high midline areas in idiopathic normal pressure hydrocephalus detected by axial and coronal MRI. Neuroradiology. 2008;50:117–22.

    Article  PubMed  Google Scholar 

  93. Adachi M, Kawatani T, Oshima F, et al. Upper midbrain profile sign and cingulate sulcus sign: MRI findings on sagittal images in idiopathic normal-pressure hydrocephalus, Alzheimer’s disease, and progressive supranuclear palsy. Radiat Med. 2006;24:568–72.

    Article  PubMed  Google Scholar 

  94. Ishii K, Kanda T, Harada A, et al. Clinical impact of the callosal angle in the diagnosis of idiopathic normal pressure hydrocephalus. Eur Radiol. 2008;18:2678–83.

    Article  PubMed  Google Scholar 

  95. Iseki C, Kawanami T, Nagasawa H, et al. Asymtomatic ventriculomegaly with features of iNPH on MRI (AVIM) in the elderly.:a prospective study in a Japanese population. J Neurol Sci. 2009;277:54–7.

    Article  PubMed  Google Scholar 

  96. Yamashita F, Sasaki M, Saito M, et al. Voxel-based morphometry of disproportionate cerebrospinal fluid space distribution for the differential diagnosis of idiopathic normal pressure hydrocephalus. J Neuroimaging. 2014;24:359–65.

    Article  PubMed  Google Scholar 

  97. Oi S, Shimoda M, Shibata M, et al. Pathophysiology of long-standing overt ventriculomegaly in adults. J Neurosurg. 2000;92:933–40.

    Article  CAS  PubMed  Google Scholar 

  98. Dandy WE, Blackfan KD. Internal hydrocephalus. An experimental, clinical and pathological study. Am J Dis Child. 1914;8:406–81.

    Article  Google Scholar 

  99. Greiz D. Radiological assessment of hydrocephalus: new theories and implications for therapy. Neurosurg Rev. 2004;27:145–65.

    Google Scholar 

  100. Yamada S, Miyazaki M, Kanazawa H, et al. Visualization of cerebrospinal fluid movement with spin labeling at MR imaging preliminary results in normal and pathophysiologic conditions. Radiology. 2008;249:644–52.

    Article  PubMed  Google Scholar 

  101. Román GC, Tatemichi TK, Erkinjuntti T, et al. Vascular dementia: diagnostic criteria for research studies report of the NINDS-AIREN International Workshop. Neurology. 1993;43:250–60.

    Article  PubMed  Google Scholar 

  102. Chui HC, Victoroff JI, Margolin W, et al. Criteria for the diagnosis of ischemic vascular dementia proposed by the state of California Alzheimer’s Disease Diagnostic and Treatment Centers. Neurology. 1992;42:473–80.

    Article  CAS  PubMed  Google Scholar 

  103. Tatemichi TK. How acute brain failure becomes chronis: a view of the mechanisms of dementia related to stroke. Neurology. 1990;40:1652–9.

    Article  CAS  PubMed  Google Scholar 

  104. Tatemichi TK, Dresmond DW, Prohovnik I, et al. Confusion and memory loss from capsular genu infarcts: a thalamocortical disconnection syndrome? Neurology. 1992;42:1966–79.

    Article  CAS  PubMed  Google Scholar 

  105. Lazzaro NA, Wright B, Castillo M, et al. Artery of Percheron infarction: imaging patterns and clinical spectrum. AJNR. 2010;31:1283–9.

    Article  PubMed  Google Scholar 

  106. Meila D, Sailou G, Kringo T, et al. Subcallosal artery stroke: infarction of the fornix and the genu of the corpus callosum. The importance of the anterior communicating artery complex. Case series and review of the literature. Neuroradiology. 2015;57:41–7.

    Article  PubMed  Google Scholar 

  107. Akiguchi I. Pathophysiology and therapeutic approaches on Binswanger’s disease. No To Shinkei. 2006;58:289–97.

    CAS  PubMed  Google Scholar 

  108. Akiguchi I, Budka H, Shirakashi Y, et al. MRI features of Binswanger’s disease predict prognosis and associated pathology. Ann. Clin. Transl. Neurol. 2014;1(10):813–21.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Okudera T, Huang YP, Fukusumi A, et al. Micro-angiographical studies of the medullary venous system of the cerebral hemisphere. Neuropathology. 1999;19:93–111.

    Article  CAS  PubMed  Google Scholar 

  110. Arbanitakis Z, Leurgans SE, Barnes LL, et al. Microinfarct pathology, dementia, and cognitive systems. Stroke. 2011;42:722–7.

    Article  Google Scholar 

  111. Ii Y, Maeda M, Kida H, et al. In vivo detection of cortical microinfarcts on ultrahigh-field MRI. J Neuroimaging. 2013;23:28–32.

    Article  PubMed  Google Scholar 

  112. Yamamoto Y, et al. Neuropathological correlates of temporal pole white matter hyperintensities in CADASIL. Stroke. 2009;40:204–2011.

    Article  Google Scholar 

  113. Tomimoto H, Ohtani R, Wakita H, et al. Small artery dementia in JAPAN: radiological differences between CADASIL, leukoariosis and Binswanger’s disease. Dement Geriatr Cog Disord. 2006;21:162–9.

    Article  Google Scholar 

  114. Attems J, Lintner F, Jellinger KA. Amyloid beta peptide 1-42 highly correlates with capillary cerebral amyloid angiopathy and Alzheimer disease pathology. Acta Neuropathol. 2004;107:283–91.

    Article  CAS  PubMed  Google Scholar 

  115. Charidimou A, Gang Q, Werring DJ. Sporadic cerebral amyloid angiopathy revisited: recent insights into pathophysiology and clinical spectrum. J Neurol Neurosurg Psychiatry. 2012;83:124–37.

    Article  PubMed  Google Scholar 

  116. Chételat G, Villemagne VL, Villain N, Jones G, Ellis KA, Ames D, Martins RN, Masters CL, Rowe CC, AIBL Research Group. Accelerated cortical atrophy in cognitively normal elderly with high β-amyloid deposition. Neurology. 2012;78:477–84.

    Article  PubMed  CAS  Google Scholar 

  117. Becker JA, Hedden T, Carmasin J, et al. Amyloid-β associated cortical thinning in clinically normal elderly. Ann Neurol. 2011;69:1032–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Poels MM, Ikram MA, van der Lugt A, et al. Cerebral microbleeds are associated with worse cognitive function: the Rotterdam scan study. Neurology. 2012;78:326–33.

    Article  CAS  PubMed  Google Scholar 

  119. Eng JA, Frosch MP, Choi K, Rebeck GW, Greenberg SM. Clinical manifestations of cerebral amyloid angiopathy-related inflammation. Ann Neurol. 2004;55:250–6.

    Article  PubMed  Google Scholar 

  120. Chung KK, Anderson NE, Hutchinson D, Synek B, Barber PA. Cerebral amyloid angiopathy related inflammation: three case reports and a review. J Neurol Neurosurg Psychiatry. 2011;82:20–6.

    Article  PubMed  Google Scholar 

  121. Kinnecom C, Lev MH, Wendell L, Smith EE, Rosand J, Frosch MP, Greenberg SM. Course of cerebral amyloid angiopathy-related inflammation. Neurology. 2007;68:1411–6.

    Article  CAS  PubMed  Google Scholar 

  122. Cummings J, Benson DF, Jr LVS, et al. Reversible dementia. Illustrative cases, definition, and review. JAMA. 1980;243:2434–9.

    Article  CAS  PubMed  Google Scholar 

  123. Piccini C, Bracco L, Amaducci L. Treatable and reversible dementias: an update. J Neurol Sci. 1998;153:172–81.

    Article  CAS  PubMed  Google Scholar 

  124. Mori H, Kunimatsu S, Sasaki H, et al. Rapidly progressive dementias-Diagnostic process. Clin Imagiol. 2014;30:156–76.

    Google Scholar 

  125. Demaerel P, Paert AL, Vanopdenbosch L, et al. Diffusion-weighed magnetic resonance imaging in Creutzfeldt-Jacob disease. Lancet. 1997;349:847–8.

    Article  CAS  PubMed  Google Scholar 

  126. Vitali P, Maccagnano E, Caverzasi E, et al. Diffusion-weighted MRI hyperintensity patterns cdifferentiate CJD from other rapid dementias. Neurology. 2011;76:1711–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Finkenstaedt M, Azudra A, Aerr I, et al. MR imaging of Creutzfeldt-Jacob disease. Radiology. 1996;199:793–8.

    Article  CAS  PubMed  Google Scholar 

  128. Nozaki I, Hamaguchi T, Noguchi-Shinohara M, et al. The MM2-cortical form of sporadic Creutzfeldt-Jacob disease presenting with visual disturbance. Neurology. 2006;67:531–3.

    Article  CAS  PubMed  Google Scholar 

  129. Zeidler M, Sellar RJ, Collie DA, et al. The pulvinar sign on magnetic resonance imaging in variant Creutzfeldt-Jacob disease. Lancet. 2000;355:1412–8.

    Article  CAS  PubMed  Google Scholar 

  130. Collie DA, Summers DM, Sellar RJ, et al. Diagnosing variant Creutzfeld-Jacob disease with the Pulvinar Sign: MR imaging findings in 86 Neuropathologically confirmed cases. AJNR. 2003;24:1560–9.

    PubMed  Google Scholar 

  131. Schouten J, Cinque P, Gisslen M, et al. HIV-1 infection and cognitive impairment in the cART era: a review. AIDS. 2011;25:561–75.

    Article  PubMed  Google Scholar 

  132. Smith AB, Smirniotipoulos JG, Rushing EJ, et al. From the archives of the AFIP: central nervous system infections assoiciated with human immunodeficiency virus infection: radiologic-pathologic correlation. RadioGraphics. 2011;28:2033–58.

    Article  Google Scholar 

  133. Masters MC, Acnes BM. Role of neuroimaging in HIV-associated neurocognitive disorders. Semin Neurol. 2014;34:89–102.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Saylor D, Dickens AM, Sacktor N, et al. HIV-associated neurocognitive disorder-pathogenesis and prospects for treatment. Nat Rev Neurol. 2016;12:234–48.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Filippi CG, Ulug AM, Ryan E, et al. Diffusion tensor imaging of patients with HIV and normal-appearing white matter on MRimages of the brain. AJNR Am J Neuroradiol. 2001;22(2):277–83.

    CAS  PubMed  Google Scholar 

  136. Bash S, Hathout GM, Cohen S. Mesiotemporal T2-weighted hyperintensity: neurosyphilis mimicking herpes encephalitis. AJNR Am J Neuroradiol. 2001;22(2):314–6.

    CAS  PubMed  Google Scholar 

  137. Hogan TF, Padgett BL, Walker DL, et al. Rapid detection and identification of JC virus and BK virus in human urine by using immunofluorescence microscopy. J Clin Microbiol. 1980;11(2):178–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Petito CK, Cho ES, Lemann W, et al. Neuropathology of acquired immunodeficiency syndrome (AIDS): an autopsy review. J Neuropathol Exp Neurol. 1986;45(6):635–46.

    Article  CAS  PubMed  Google Scholar 

  139. Berger JR, Levy RM, Flomenhoft D, et al. Predictive factors for prolonged survival in acquired immunodeficiency syndrome-associated progressive multifocal leukoencephalopathy. Ann Neurol. 1998;44(3):341–9.

    Article  CAS  PubMed  Google Scholar 

  140. Whiteman ML, Post MJ, Berger JR, et al. Progressive multifocal leukoencephalopathy in 47 HIV-seropositive patients: neuroimaging with clinical and pathologic correlation. Radiology. 1993;187(1):233–40.

    Article  CAS  PubMed  Google Scholar 

  141. Wheeler AL, Truwit CL, Kleinschmidt-DeMasters BK, et al. Progressive multifocal leukoencephalopathy: contrast enhancement on CT scans and MR images. AJR. 1993;161(5):1049–51.

    Article  CAS  PubMed  Google Scholar 

  142. Arbusow V, Strupp M, Pfister HW, et al. Contrast enhancement in progressive multifocal leukoencephalopathy: a predictive factor for long-term survival? J Neurol. 2000;247(4):306–8.

    Article  CAS  PubMed  Google Scholar 

  143. Kishi Y, Kami M, Kusumi E, et al. Prostatic acid phosphatase (PAP): a possible diagnostic marker of intravascular large B-cell lymphoma. Haematologica. 2004;89(4):e43–e452.

    Google Scholar 

  144. Matsue K, Asada N, Takeuchi M, et al. A clinicopathological study of 13 cases intravascular lymphoma: experience in a single institution over a 9-yr period. Eur J Haematol. 2007;80:236–44.

    Google Scholar 

  145. Yamamoto A, Kikuchi Y, Homma K, et al. Characteristics of intravascular large B-cell lymphoma on cerebral MR imaging. AJNR. 2012;33:292–6.

    Article  CAS  PubMed  Google Scholar 

  146. Shimada K, Matsue K, Yamamoto K, et al. Retrospective analysis of intravascular large B-cell lymphoma treated with rituximab-containing chemotherapy as reported by the IVL study group in Japan. J Clin Oncol. 2008;26:3189–95.

    Article  CAS  PubMed  Google Scholar 

  147. Han K, Haley JC, Carlson K, et al. Regression of cutaneous intravascular lymphoma with rituximab. Cutis. 2003;72:137–40.

    PubMed  Google Scholar 

  148. Finelli PF. Diffusion-weighted MR in hypoglycemic coma. Neurology. 2001;57:933.

    Article  CAS  PubMed  Google Scholar 

  149. Aoki T, Sato T, Hasegawa K, et al. Reversible hyperintensity lesion on diffusion-weighted MRI in hypoglycemic coma. Neurology. 2004;27:392–3.

    Article  Google Scholar 

  150. Cho SJ, Minn YK, Kwon KH. Severe hypoglycemia and vulnerability of the brain. Arch Neurol. 2006;63:138.

    Article  PubMed  Google Scholar 

  151. Kang EG, Jeon SJ, Choi SS, et al. Diffusion MR imaging of hypoglycemic encephalopathy. AJNR. 2010;31:559–64.

    Article  CAS  PubMed  Google Scholar 

  152. Berg AT, Berkovic SF, Brodie MJ, et al. Revised terminology and concepts for seizures and epilepsies: report of the ILAE Commission on Classification and Ternimonology. 2005–2009. Epilepsia. 2010;51:676–85.

    Article  PubMed  Google Scholar 

  153. Faught E, Richman J, Martin R, et al. Incidence and prevalence of epilepsy among older U.S. Medicare beneficiaries. Neurology. 2012;78:448–53.

    Google Scholar 

  154. Tokumaru AM, Saito Y, Mizuno M, et al. Imaging findings of Posticteric encephalopathy-clinico-radio-pathological correlation. In: Report of Tokyo Metoropolitan Medical Center of Gerontology, 2008 year book.

    Google Scholar 

  155. Rahmani M, Bennani M, Benabdelilil M, et al. Neuropsychological and magnetic resonance imaging findings in five patients after carbon monoxide poisoning. Rev Neurol. 2006;162:1240–7.

    Article  CAS  PubMed  Google Scholar 

  156. Durak AX, Coskun A, Yikilmaz A, et al. Magnetic resonance imaging findings in chronic carbon monoxide intoxication. Acta Radiol. 2005;46:322–7.

    Article  CAS  PubMed  Google Scholar 

  157. Parkinson RB, Hopkins R, Cleavinger HB, et al. White matter hyperintensities and neuropsychological outcome following carbon monoxide poisoning. Neurology. 2002;58:1525–32.

    Article  CAS  PubMed  Google Scholar 

  158. Ances BM, Vitaliani R, Taylor RA, et al. Treatment-responsive limbic encephalitis identified by neuropil antibodies: MRI and PETcorrelates. Brain. 2005;128:1764–77.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Gultekin SH, Rosenfeld MR, Voltz R, et al. Paraneoplastic limbic encephalitis: neurological symptoms, immunological findings and tumour association in 50 patients. Brain. 2005;123:1481–94.

    Article  Google Scholar 

  160. Lucchinetti CF, Kimmel DW, Lennon VA. Paraneoplastic and oncologic profiles of patients seropositive for type 1 antineuronal nuclear autoantibodies. Neurology. 1998;50:652–7.

    Article  CAS  PubMed  Google Scholar 

  161. Lancaster E. The diagnosis and treatment of autoimmune encephalitis. J Clin Neurol. 2016;12:1–13.

    Article  PubMed  Google Scholar 

  162. Dalmau J, Gleichman AJ, Hughes EG, et al. Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurol. 2008;7:1091–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Hughes EG, Peng X, Gleichman AJ, et al. Cellular and synaptic mechanisms of anti-NMDA receptor encephalitis. J Neurosci. 2010;30:5866–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Fine C, Kopp UA, Pajkert A, et al. Structural hippocampal damage following anti-N-Methyl-D-aspartate receptor encephalitis. Biol Psychiatry. 2016;79:727–34.

    Article  CAS  Google Scholar 

  165. Iizuka T, Sakai F, Ide T, et al. Anti-NMDA receptor encephalitis in Japan: long-term outcome without tumor removal. Neurology. 2008;70:504–11.

    Article  CAS  PubMed  Google Scholar 

  166. Titulaer M, Hoftberger R, Iizuka T, et al. Overlapping demyelinating syndromes and anti-NMDA receptor encephalitis. Ann Neurol. 2014;75:411–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Titulaer MJ, McCracken L, Gabilondo I, et al. Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: an observational cohort study. Lancet Neurol. 2013;12:157–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Seipelt M, Zerr I, Nau R, et al. Hashimoto’s encephalitis as a differential diagnosis of Creutzfeldt–Jakob disease. J Neurol Neurosurg Psychiatry. 1999;66:172–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Song YM, Seo DW, Chang GY. MR findings in Hashimoto encephalopathy. AJNR. 2004;25:807–8.

    PubMed  Google Scholar 

  170. McCabe DJ, Burke T, Connolly S, et al. Amnestic syndrome with bilateral mesial temporal lobe involvement in Hashimoto’s encephalopathy. Neurology. 2000;54:737–9.

    Article  CAS  PubMed  Google Scholar 

  171. Grommes C, Griffin C, Downes KA, et al. Steroid-responsive encephalopathy associated with autoimmune thyroiditis presenting with diffusion MR imaging changes. AJNR. 2008;29:1550–1.

    Article  CAS  PubMed  Google Scholar 

  172. Mahad DJ, Staugaitis S, Ruggieri P, et al. Steroid-responsive encephalopathy associated with autoimmune thyroiditis and primary CNS demyelination. J Neurol Sci. 2005;228:3–5.

    Article  PubMed  Google Scholar 

  173. White ML, Hadley WL, Zhang Y, et al. Analysis of central nervous system vasculitis with diffusion-weighted imaging and apparent diffusion coefficient mapping of the normal-appearing brain. AJNR Am J Neuroradiol. 2007;28:933–7.

    Article  CAS  PubMed  Google Scholar 

  174. Moritani T, Hiwatashi A, Shrier DA, et al. CNS vasculitis and vasculopathy: efficacy and usefulness of diffusion-weighted echoplanar MR imaging. Clin Imaging. 2004;28:261–70.

    Article  PubMed  Google Scholar 

  175. Mouzak A, Agathos P, Vourdeli-Giannakoura E. Subacute cerebellar syndrome and Hashimoto’s thyroiditis: association or simple coincidence? Act Neurol Scand. 2002;106:374–8.

    Article  CAS  Google Scholar 

  176. Nolte KW, Unbehaun A, Sieker H, et al. Hashimoto encephalopathy: a brainstem vasculitis. Neurology. 2000;54:769.

    Article  CAS  PubMed  Google Scholar 

  177. Bohnen N, Parnell K, Harper C. Reversible MRI findings in a patient with Hashimoto’s encephalopathy. Neurology. 1997;49:246–7.

    Article  CAS  PubMed  Google Scholar 

  178. Shibata N, Yamamoto Y, Sunami N, et al. Isolated angiitis of the CNS associated with Hashimoto’s disease. Rinsho Shinkeigaku. 1992;32:191–8.

    CAS  PubMed  Google Scholar 

  179. Johnson RT, Richardson EP. The neurological manifestations of systemic lupus erythematosus. Medicine. 1968;47:337–69.

    Article  CAS  PubMed  Google Scholar 

  180. O’Connor JF, Musher DM. Central nervous system involvement in systemic lupus erythematosus: a study of 150 cases. Arch Neurol. 1966;14:157–64.

    Article  PubMed  Google Scholar 

  181. Fanouriakis A, Boumpas DT, Bertsias GK. Pathogenesis and treatment of CNS lupus. Curr Opin Rheumatol. 2013;25:577–83.

    Article  CAS  PubMed  Google Scholar 

  182. Sibbitt WL Jr, Brooks WM, Kornfeld M, et al. Magnetic resonance imaging and brain histopathology in neuropsychiatric systemic lupus erythematosus. Semin Arthritis Rheum. 2010;40:32–52.

    Article  PubMed  Google Scholar 

  183. Nojima J, Kuratsune H, Suehjisa E, et al. Strong correlation between the prevalence of cerebral infarction and the presence of annti-cardiolipin/β2-glycoprotein I and anti-phosphatidylserine/prothrombin antibodies. Thromb Haemost. 2004;91:867–76.

    Google Scholar 

  184. Alexander JJ, Richard JQ. Systemic lupus erythematosus and the brain: what mice are telling us. Neurochem Int. 2007;50:5–11.

    Article  CAS  PubMed  Google Scholar 

  185. Fazekas F, Kleinert R, Offenbacher H, et al. The morphologic correlate of incidental punctate white matter hyperintensities on MR images. AJNR. 1991;12:915–21.

    CAS  PubMed  Google Scholar 

  186. Harris EN, Gharavi AE, Asherson RA, et al. Cerebral infarction in systemic lupus: association with anticardiolipin antibodies. Clin Exp Rheumatol. 1984;2:47–51.

    CAS  PubMed  Google Scholar 

  187. Moritani T, Shrier DA, Numaguchi Y, et al. Diffusion-weighted echo-planar MR imaging of CNS involvenent in systemic lupus erythematosus. Acta Radiol. 2001;8:741–53.

    CAS  Google Scholar 

  188. Böckle BC, Jara D, Aichhorn K, et al. Cerebral large vessel vasculitis in systemic lupus erythematosus. Lupus. 2014;23:1417–21.

    Article  PubMed  Google Scholar 

  189. Sato S, Nakajima J, Shimura M, et al. Reversible basal ganglia lesions in neuropsychiatric lupus: a report of three pediatric cases. Int J Rheum Dis. 2014;17:274–9.

    Article  CAS  PubMed  Google Scholar 

  190. Jeong HW, Her M, Bae JS, et al. Brain MRI in neuropsychiatric lupus: associations with the 1999 ACR case definitions. Rheumatol Int. 2015;35:861–9.

    Article  CAS  PubMed  Google Scholar 

  191. Jennings JE, Attwood J, et al. Value of MRI of the brain in patients with systemic lupus erythematosus and neurologic disturbance. Neuroradiology. 2003;46:15–21.

    PubMed  Google Scholar 

  192. Kaichi Y, Kakeda S, Moriya J, et al. Brain MR findings in patients with systemic lupus erythematosus with and without antiphospholipid antivody syndrome. AJNR. 2014;35:100–5.

    Article  CAS  PubMed  Google Scholar 

  193. Harris EN, Gharavi AE, Mackworth-Young CG, et al. Lupoid sclerosis: a possible pathogenetic role for antiphospholipid antibodies. Ann Rheum Dis. 1985;44:281–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Provenzale JM, Barboriak DP, Allen NB, et al. Patients with antiphospholipid antibodies: CT and MRfindings of the brain. AJR. 1996;167:1573–8.

    Article  CAS  PubMed  Google Scholar 

  195. Asherson RA, Mercey D, Phillips G, et al. Recurrent stroke and multi-infarct dementia in systemic lupus erythematosus: association with antiphospholipid antibodies. Ann Rheum Dis. 1987;46:605–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Provenzale JM, Heinz ER, Ortel TL, et al. Antiphospholipid antibodies in patients without systemic lupus erythematosus: neuroradiologic findings. Radiology. 1994;192:531–7.

    Article  CAS  PubMed  Google Scholar 

  197. Shastri R, Sha G, Wang P, et al. MR diffusion tractography to identify and characterize microstructural white matter tract changes in systemic lupus erythematosus patients. Acad Radiol. 2016;23:1431–40.

    Article  PubMed  Google Scholar 

  198. Xu X, Hui ES, Mok MY, et al. Sutrucural brain network reorganization in patients with neuropsychiatric systemic lupus erythematosus. AJNR. 2016;38(1):64–70.

    Article  PubMed  Google Scholar 

  199. Shapira-Lichter I, Weinstein M, Lustgarten N, et al. Impaired diffusion tensor imaging findings in the corpus callosum and cingulum may underlie impaired learning and memory abilities in systemic lupus erythematosus. Lupus. 2016;25:1200–8.

    Article  CAS  PubMed  Google Scholar 

  200. Hughes M, Sundgren PC, Fan X, et al. Diffusion tensor imaging in patients with acute onset of neuropsychiatric systemic lupus erythematosus: a prospecrive study of apparent diffusion coefficient, fractional anisotrphy values, and eigenvalues in different regions of the brain. Acta Radiol. 2007;48:213–22.

    Article  CAS  PubMed  Google Scholar 

  201. Tokumaru AM, Saito Y, Murayama S. Imaging diagnosis for CNS abnormalities in autoimmune disease. Rinsho Houshasen 2005;50:480–90.

    Google Scholar 

  202. D’Cruz DP, Khamashta MA, Hughes GR. Systemic lupus erythematosus. Lancet. 2007;369:587–96.

    Article  PubMed  Google Scholar 

  203. Sung JH, Ralirez-Lassepas M, Mastri AR, et al. An unusual degenerative disorder of neurons associated with a novel intranuclear hyaline inclusion (neuronal intranuclear hyaline inclusion disease). A clinicopathological study of a case. J Neuropathol Exp Neurol. 1980;39:107–30.

    Article  CAS  PubMed  Google Scholar 

  204. Patel H, Normal MG, Perry TL, et al. Multiple system atrophy with neuronal intranuclear hyaline inclusions. Report of a case and review of the literature. J Neurol Sci. 1985;67:57–65.

    Article  CAS  PubMed  Google Scholar 

  205. Funata N, Maeda Y, Koike M, et al. Neuronal intranuclear hyaline inclusion disease: report of a case and review of the literature. Clin Neuropathol. 1990;9:89–96.

    CAS  PubMed  Google Scholar 

  206. Takahashi-Fujigasaki J. Neuronal intranuclear hyaline inclusion disease. Neuropathology. 2003;23:351–9.

    Article  PubMed  Google Scholar 

  207. Tokumaru AM, Sakurai K, Imabayashi E, et al. MRI findings of neuronal intranuclear hyaline inclusion disease (NIHID)-Histopathologic correlation. Neuropathology. 2013;33(Suppl):131. (abstract in Japanese)

    Google Scholar 

  208. Takahashi-Fujigasaki J, Nakano Y, Uchino A, et al. Adult-onset neuronal intranuclear hyaline inclusion disease in not rare in older adults. Griatr Gerontol Int. 2016;16(Suppl 1):51–6.

    Article  Google Scholar 

  209. Sone J, Kitagawa N, Sugawara E, et al. Neuronal intranuclear inclusion disease with leukoencephloopathy diagnosed via skin biopsy. J Neurol Neurosurg Psychiarty. 2014;85:354–6.

    Article  Google Scholar 

  210. Sone J, Tanaka F, Koike H, et al. Skin biopsy is useful for the antemortem diagnosis of neuronal intranuclear inclusion disease. Neurology. 2011;76:1372–6.

    Article  CAS  PubMed  Google Scholar 

  211. Morimoto S, Hatsuta H, Komiya T, et al. Simultaneous skin-nerve-biopsy and abnormal mitochondorial inclusions in intranuclear hyaline inclusion body disease. J Neurol Sci. 2016;372:447–9.

    Article  PubMed  CAS  Google Scholar 

  212. Tokumaru AM. MRI findings of neuronal intranuclear hyaline inclusion body disease. Jpn J Diagn Imaging. 2014;34:10–2.

    Google Scholar 

  213. Greco CM, Hagerman RJ, Tassone F, et al. Neuronal intranuclear inclusions in a new cerebellar tremor/ataxia syndrome among fragile X carriers. Brain. 2002;125(Pt 8):1760–71.

    Article  CAS  PubMed  Google Scholar 

  214. Greco CM, Berman RF, Martin RM, et al. Neuropathology of fragile X-associated tremor/ataxia syndrome (FXTAS). Brain. 2006;129(Pt 1):243–55.

    CAS  PubMed  Google Scholar 

  215. Brunberg JA, Jacquemont S, Hagerman RJ, et al. Fragile X premutation carriers: characteristic MR imaging findings of adult male patients with progressive cerebellar and cognitive dysfunction. AJNR. 2002;23:1757–66.

    PubMed  Google Scholar 

  216. van der Knaap MS, Naidu S, Kleinschmidt-Demasters BK, et al. Autosomal dominant diffuse leukoencephalopathy with neuroaxonal spheroids. Neurology. 2000;54(2):463–8.

    Article  PubMed  Google Scholar 

  217. Freeman SH, Bt H, Sims KB, et al. Adult onset leukodystrophy with neuroaxonal spheroids: clinical, neuroimaging and neuropathologic observations. Brain Pathol. 2009;19:39–47.

    Article  PubMed  Google Scholar 

  218. Kinosita M, Yoshida K, Oyanagi K, et al. Hereditary diffuse leukoencephalopathy with axonal spheroids caused by R782H mutation in CSF1R: Case report. J Neurolo Sci. 2012;318:115–8.

    Article  Google Scholar 

  219. Kim EJ, Shin JH, Kim JH, et al. Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia linked CSF1Rmutation: report of four Korean cases. J Neurol Sci. 2015;349:232–8.

    Article  CAS  PubMed  Google Scholar 

  220. Sundel C, Van Gerpen JA, Wider C, et al. MRI characteristics and scoring in HDLS due to CSF1R gene mutations. Neurology. 2012;79:566–74.

    Article  Google Scholar 

Download references

Acknowledgements

I would like to express my gratitude to Dr. Kenji Ishii, Dr. Harushi Mori, Dr. Kazutomi Kanemaru, Dr. Renpei Sengoku, Dr. Junko Fujigasaki, Dr. Hitoshi Terada, Dr. Hiroshi Oba, Dr. Satoshi Matsushima, Dr. Sunao Mizumura, Dr, Fuji Narita, Dr. Keigo Shimoji, and Dr. Kameyama for helpful discussions. I also gratefully acknowledge the work of past and present members of Department of Diagnostic Radiology, Neurology, Psychiatry, Brain Bank of Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology. Without Ms. Asuka Tokumaru and Ms. Makie Kambara’s encouragement, this project would not have materialized. This work is supported by a Grant-in-Aid for Scientific Research on Innovative Areas (Comprehensive Brain Science Network) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (221S0003) and Grants-Aid-for Scientific Research(C) KAKENHI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aya M. Tokumaru .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan

About this chapter

Cite this chapter

Tokumaru, A.M., Saito, Y., Murayama, S., Sakurai, K. (2017). MRI Diagnosis in Other Dementias. In: Matsuda, H., Asada, T., Tokumaru, A. (eds) Neuroimaging Diagnosis for Alzheimer's Disease and Other Dementias. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55133-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55133-1_4

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55132-4

  • Online ISBN: 978-4-431-55133-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics