Abstract
The dinoflagellate is a member of the eukaryotes that belong to a diverged protist group, Alveolata. Because the nuclei show several unusual features not observed in other eukaryotes, the nucleus in the “core” or typical dinoflagellate is especially called a “dinokaryon”. Chromosomes in the dinokaryon are condensed throughout the whole cell cycle and show a cholesteric liquid crystal organization. Its nucleosome lacks the “beads on a string” structure which is commonly observed in eukaryotic nuclei. Despite the existence of canonical histone protein-coding genes, those proteins are not found in the dinokaryon, while certain proteins showing amino acid sequences similar to bacterial or viral proteins are abundantly contained in the dinokaryon. The dinoflagellate genome carries some rare bases such as 5-hydroxymethyluracil, and TTTT repeats exist as a possible transcription initiator element instead of the TATA box. A comprehensive transcriptome analysis of the EST database using a variety of dinoflagellates including ancestral to divergent species showed that SL trans-splicing is required for transcript maturation.
Keywords
- Dinoflagellate
- Dinokaryon
- Cholesteric liquid crystal
- Chromosome
- Oxyrrhis
- Noctiluca
- Hematodinium
- NP23
- DVNP
- HCc
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Adl SM, Simpson AGB, Farmer MA et al (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52:399–451
Adl SM, Simpson AGB, Lane C et al (2012) The revised classification of eukaryotes. J Eukaryot Microbiol 59:429–493
Afzelius BA (1963) The nucleus of Noctiluca scintillans: aspects of nucleocytoplasmic exchanges and the formation of nuclear membrane. J Cell Biol 19:229–238
Bachvaroff TR, Gornik SG, Concepcion GT et al (2014) Dinoflagellate phylogeny revisited: using ribosomal proteins to resolve deep branching dinoflagellate clades. Mol Phylogenet Evol 70:314–322
Bayer T, Aranda M, Sunagawa S et al (2012) Symbiodinium transcriptomes: Genome insights into the dinoflagellate Symbionts of Reef-Building Corals. PLoS One 7:e35269
Bhaud Y, Géraud ML, Ausseil J et al (1999) Cyclic expression of a nuclear protein in a dinoflagellate. J Eukaryot Microbiol 46:259–267
Bhaud Y, Guillebault D, Lennon J et al (2000) Morphology and behaviour of dinoflagellate chromosomes during the cell cycle and mitosis. J Cell Sci 113:1231–1239
Blank RJ, Huss VAR, Kersten W (1988) Base composition of DNA from symbiotic dinoflagellates: a tool for phylogenetic classification. Arch Microbiol 149:515–520
Bodansky S, Mintz LB, Holmes DS (1979) The mesokaryote Gyrodinium cohnii lacks nucleosomes. Biochem Biophys Res Commun 88:1329–1336
Bouligand Y, Soyer MO, Puiseux-Dao S (1968) La structure fibrillaire et l’orientation des chromosomes chez les Dinoflagellés. Chromosoma 24:251–287
Bråte J, Krabberød AK, Dolven JK et al (2012) Radiolaria associated with large diversity of marine alveolates. Protist 163:767–777
Brunelle SA, van Dolah FM (2011) Post-transcriptional regulation of S-phase genes in the dinoflagellate, Karenia brevis. J Eukaryot Microbiol 58:373–382
Cachon J, Cachon M (1987) Parasitic dinoflagellates. In: Taylor F (ed) The biology of dinoflagellates. Blackwell Scientific Publications, Oxford, pp 571–610
Calkins GN (1899) Mitosis in Noctiluca miliaris and its bearing on the nuclear relations of the protozoa and metazoa. J Morphol 15:711–768
Cavalier-Smith T (1991) Cell diversification in heterotrophic flagellates. In: Larsen J, Patterson DJ (eds) In the biology of free-living heterotrophic flagellates. Clarendon Press, Oxford, pp 113–131
Cavalier-Smith T (1993) Kingdom protozoa and its 18 phyla. Microbiol Mol Biol Rev 57:953–994
Chan YH, Wong JTY (2007) Concentration-dependent organization of DNA by the dinoflagellate histone-like protein HCc3. Nucleic Acids Res 35:2573–2583
Chan Y, Kwok A, Tsang J, Wong J (2006) Alveolata histone-like proteins have different evolutionary origins. J Evol Biol 19:1717–1721
Dechat T, Pfleghaar K, Sengupta K et al (2008) Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev 22:832–853
Dodge JC (1965) Chromosome structure in the dinoflagellates and the problem of the mesokaryotic cell. Excerpta Med Int Congr Ser 91:339–345
Dodge JD, Crawford RM (1971) Fine structure of the dinoflagellate Oxyrrhis marina I. The general structure of the cell. Protistologica 7:295–303
Essers J, Theil AF, Baldeyron C et al (2005) Nuclear dynamics of PCNA in DNA replication and repair. Mol Cell Biol 25:9350–9359
Falkowski PG, Katz ME, Knoll AH et al (2004) The evolution of modern eukaryotic phytoplankton. Science 305:354–360
Field CB, Behrenfeld MJ, Randerson JT et al (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 28:237–240
Fukuda Y, Endoh H (2006) New details from the complete life cycle of the red-tide dinoflagellate Noctiluca scintillans (Ehrenberg) McCartney. Eur J Protistol 42:209–219
Fukuda Y, Endoh H (2008) Phylogenetic analyses of the dinoflagellate Noctiluca scintillans based on β-tubulin and Hsp90 genes. Eur J Protistol 44:27–33
Gabrielsen T, Minge M, Espelund M et al (2011) Genome evolution of a tertiary dinoflagellate plastid. PLoS One 6:e19132
Galleron C (1984) The fifth base: a natural feature of dinoflagellate DNA. Orig Life Evol Biosph 13:195–203
Gao XP, Li JY (1986) Nuclear division in the marine dinoflagellate Oxyrrhis marina. J Cell Sci 85:161–175
Gómez F, Moreira D, López-García P (2010) Molecular phylogeny of noctilucoid dinoflagellates (Noctilucales, Dinophyceae). Protist 161:466–478
Gornik SG, Ford KL, Mulhern TD et al (2012) Loss of nucleosomal DNA condensation coincides with appearance of a novel nuclear protein in dinoflagellates. Curr Biol 22:2303–2312
Gould S, Tham W, Cowman A et al (2008) Alveolins, a new family of cortical proteins that define the protist infrakingdom Alveolata. Mol Biol Evol 25:1219–1230
Groisillier A, Massana R, Valentin K, Vaulot D (2006) Genetic diversity and habitats of two enigmatic marine alveolate lineages. Aquat Microb Ecol 42:277–291
Guillebault D, Sasorith S, Derelle E, Wurtz JM, Lozano JC, Bingham S, Tora L, Moreau H (2002) A new class of transcription initiation factors, intermediate between TATA box-binding proteins (TBPs) and TBP-like factors (TLFs), is present in the marine unicellular organism, the dinoflagellate Crypthecodinium cohnii. J Biol Chem 277:40881–40886
Guillebault D, Derelle E, Bhaud Y, Moreau H (2001) Role of nuclear WW domains and proline-rich proteins in dinoflagellate transcription. Protist 152:127–138
Hackett J, Scheetz T, Yoon H et al (2005) Insights into a dinoflagellate genome through expressed sequence tag analysis. BMC Genomics 6:80
Hamkalo BA, Rattner JB (1977) The structure of mesokaryote chromosome. Chromosoma 60:39–47
Harada A, Ohtsuka S, Horiguchi T (2007) Species of the parasitic genus Duboscquella are members of the enigmatic marine alveolate group I. Protist 158:337–347
Hastings KE (2005) SL trans-splicing: easy come or easy go? Trends Genet 21:240–247
Herzog M, Soyer M (1981) Distinctive features of dinoflagellate chromatin. Absence of nucleosomes in a primitive species Prorocentrum micans. Eur J Cell Biol 23:295–302
Herzog M, Soyer MO (1983) The native structure of dinoflagellate chromosomes and their stabilization by Ca2+ and Mg2+ cations. Eur J Cell Biol 30:33–41
Hoege C, Pfander B, Moldovan GL, Pyrowolakis G (2002) RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419:135–141
Hoppenrath M, Leander BS (2010) Dinoflagellate phylogeny as inferred from heat shock protein 90 and ribosomal gene sequences. PLoS One 5:e13220
Ishida K-I, Green BR (2002) Second- and third-hand chloroplasts in dinoflagellates: phylogeny of oxygen-evolving enhancer 1 (PsbO) protein reveals replacement of a nuclear-encoded plastid gene by that of a haptophyte tertiary endosymbiont. Proc Natl Acad Sci U S A 99:9294–9299
Ishikawa C (1898) Further observations on the nuclear division of Noctiluca. J Coll Sci Imp Univ Tokyo 12:243–260
Jackson CJ, Norman JE, Schnare MN et al (2007) Broad genomic and transcriptional analysis reveals a highly derived genome in dinoflagellate mitochondria. BMC Biol 5:41
Jaeckisch N, Yang I, Wohlrab S et al (2011) Comparative genomic and transcriptomic characterization of the toxigenic marine dinoflagellate Alexandrium ostenfeldii. PLoS One 6:e28012
Kallen RG, Simon M, Marmur J (1962) The occurrence of a new pyrimidine base replacing thymine in a bacteriophage DNA: 5-hydroxymethyl uracil. J Mol Biol 5:248–250
Kato KH, Moriyama A, Huitorel P et al (1997) Isolation of the major basic nuclear protein and its localization on chromosomes of the dinoflagellate, Oxyrrhis marina. Biol Cell 89:43–52
Keeling PJ (2004) Diversity and evolutionary history of plastids and their hosts. Am J Bot 91:1481–1493
Ki J-S (2010) Nuclear 28S rDNA phylogeny supports the basal placement of Noctiluca scintillans (Dinophyceae; Noctilucales) in dinoflagellates. Eur J Protistol 46:111–120
Leander BS, Keeling PJ (2004) Early evolutionary history of dinoflagellates and apicomplexans (Alveolata) as inferred from HSP90 and actin phylogenies. J Phycol 40:341–350
Leander BS, Kuvardina ON, Aleshin VV et al (2003) Molecular phylogeny and surface morphology of Colpodella edax (Alveolata): insights into the phagotrophic ancestry of apicomplexans. J Eukaryot Microbiol 50:334–340
Lenaers G, Scholin C, Bhaud Y et al (1991) A molecular phylogeny of dinoflagellate protists (pyrrhophyta) inferred from the sequence of 24S rRNA divergent domains D1 and D8. J Mol Evol 32:53–63
Li JY (1984) Studies of dinoflagellate chromosomal basic protein. Biosystems 16:217–225
Li L, Hastings JW (1998) The structure and organization of the luciferase gene in the photosynthetic dinoflagellate Gonyaulax polyedra. Plant Mol Biol 36:275–284
Lin S, Zhang H, Zhuang Y et al (2010) Spliced leader-based metatranscriptomic analyses lead to recognition of hidden genomic features in dinoflagellates. Proc Natl Acad Sci U S A 107:20033–20038
Livolant F, Bouligand Y (1978) New observations on the twisted arrangement of dinoflagellate chromosomes. Chromosoma 68:21–44
López-García P, Rodríguez-Valera F, Pedrós-Alió C (2001) Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409:603–607
Mak CKM, Hung VKL, Wong JTY (2005) Type II topoisomerase activities in both the G1 and G2/M phases of the dinoflagellate cell cycle. Chromosoma 114:420–431
Makde RD, England JR, Yennawar HP, Tan S (2010) Structure of RCC1 chromatin factor bound to the nucleosome core particle. Nature 467:562–566
Mínguez A, Franca S, Díaz M, de la Espina S (1994) Dinoflagellates have a eukaryotic nuclear matrix with lamin-like proteins and topoisomerase II. J Cell Sci 107:2861–2873
Moore RB, Oborník M, Janouškovec J et al (2008) A photosynthetic alveolate closely related to apicomplexan parasites. Nature 451:959–963
Morden C, Sherwood A (2002) Continued evolutionary surprises among dinoflagellates. Proc Natl Acad Sci U S A 99:11558
Nash E, Nisbet R, Barbrook A, Howe C (2008) Dinoflagellates: a mitochondrial genome all at sea. Trends Genet 24:328–335
Oakley BR, Dodge JD (1979) Evidence for a double-helically coiled toroidal chromonema in the dinoflagellate chromosome. Chromosoma 70:277–291
Okamoto OK, Hastings JW (2003) Genome-wide analysis of redox-regulated genes in a dinoflagellate. Gene 321:73–81
Okamoto N, Horák A, Keeling P (2012) Description of two species of early branching dinoflagellates, Psammosa pacifica ng, n. sp. and P. atlantica n. sp. PLoS One 7:e34900
Olins AL, Olins DE (1974) Spheroid chromatin units (v bodies). Science 183:330–332
Pfiester AL (1984) Sexual reproduction. In: Spector DL (ed) Dinoflagellates. Academic, Orlando, pp 181–199
Rae PM (1973) 5-Hydroxymethyluracil in the DNA of a dinoflagellate. Proc Natl Acad Sci U S A 70:1141–1145
Rae PM (1976) Hydroxymethyluracil in eukaryote DNA: a natural feature of the pyrrophyta (dinoflagellates). Science 194:1062–1064
Raikov IB (1978) The protozoan nucleus. Morphology and evolution. English edition: Alfert M, Beermann W, Goldstein L, Porter KR, Sitte P (1982) Cell biology monographs, vol 9 (trans: Bbrov N, Verkhovtseva M). Springer, Wien/New York
Raikov IB (1995) The dinoflagellate nucleus and chromosomes: mesokaryote concept reconsidered. Acta Protozool 34:239–247
Rill RL, Livolant F, Aldrich HC, Davidson MW (1989) Electron microscopy of liquid crystalline DNA: direct evidence for cholesteric-like organization of DNA in dinoflagellate chromosomes. Chromosoma 98:280–286
Rizzo PJ, Burghardt RC (1980) Chromatin structure in the unicellular algae Olisthodiscus luteus, Crypthecodinium cohnii and Peridinium balticum. Chromosoma 76:91–99
Rizzo PJ, Morris RL (1984) Some properties of the histone-like protein from Crypthecodinium cohnii (HCc). Biosystems 16:211–216
Rizzo PJ, Noodén LD (1974) Partial characterization of dinoflagellate chromosomal proteins. Biochim Biophys Acta 349:415–427
Rizzo PJ, Jones M, Ray SM (1982) Isolation and properties of isolated nuclei from the Florida red tide dinoflagellate Gymnodinium breve (Davis). J Protozool 29:217–222
Roy S, Morse D (2012) A Full suite of histone and histone modifying genes are transcribed in the dinoflagellate Lingulodinium. PLoS One 7:e34340
Sala-Rovira M, Geraud M, Caput D et al (1991) Molecular cloning and immunolocalization of two variants of the major basic nuclear protein (HCc) from the histone-less eukaryote Crypthecodinium cohnii (Pyrrhophyta). Chromosoma 100:510–518
Saldarriaga JF, Taylor FJR, Keeling PJ, Cavalier-Smith T (2001) Dinoflagellate nuclear SSU rRNA phylogeny suggests multiple plastid losses and replacements. J Mol Evol 53:204–213
Saldarriaga JF, McEwan ML, FAST NM et al (2003) Multiple protein phylogenies show that Oxyrrhis marina and Perkinsus marinus are early branches of the dinoflagellate lineage. Int J Syst Evol Microbiol 53:355–365
Saunders GW, Hill DRA, Sexton JP, Andersen RA (1997) Small subunit ribosomal RNA sequences from selected dinoflagellates: testing classical evolutionary hypotheses with molecular systematic methods. In: Bhattacharya D (ed) Origins of algae and their plastids. Springer, Vienna, pp 237–259
Shoguchi E, Shinzato C, Kawashima T et al (2013) Draft assembly of the Symbiodinium minutum nuclear genome reveals dinoflagellate gene structure. Curr Biol 23:1399–1408
Sigee D (1984) Structural DNA and genetically active DNA in dinoflagellate chromosomes. Biosystems 16:203–210
Soyer MO (1969) L’enveloppe nucléaire chez Noctiluca miliaris S. (Dinoflagellata). I. Quelques données sur son ultrastructure et son évolution au cours de la sporogenèse. J Microsc 8:569–580
Soyer MO (1972) Ultrastructure of the Nucleus of Noctiluca (Free Living Dinoflagellate) During Sporulation. Chromosoma 39:419–441
Soyer-Gobillard MO, Géraud ML, Coulaud D et al (1990) Location of B- and Z-DNA in the chromosomes of a primitive eukaryote dinoflagellate. J Cell Biol 111:293–304
Spector DL (1984) Dinoflagellate nuclei. In: Spector DL (ed) Dinoflagellates. Academic, Orlando, pp 107–148
Spector DL, Triemer RE (1981) Chromosome structure and mitosis in the dinoflagellates: an ultrastructural approach to an evolutionary problem. Biosystems 14:289–298
Spector DL, Vasconcelos AC, Triemer RE (1981) DNA duplication and chromosome structure in the dinoflagellates. Protoplasma 105:185–194
Moon-van der Staay SY, De Wachter R, Vaulot D (2001) Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409:607–610
Steele RE, Rae P (1980) Ordered distribution of modified bases in the DNA of a dinoflagellate. Nucleic Acids Res 8:4709–4726
Steidinger KA (1983) A re-evaluation of toxic dinoflagellate biology and ecology. In: Round FE, Chapman DT (eds) Progress in phycological research, vol 2. Elsevier, New York, pp 147–188
Taylor FJR (1989) Phylum dinoflagellata. In: Margulis L, Corliss JO, Melkonian M, Chapman D (eds) Handbook of protoctista. Jones and Bartlett, Boston, pp 419–437
Taylor F, Hoppenrath M, Saldarriaga JF (2008) Dinoflagellate diversity and distribution. Biodivers Conserv 17:407–418
Vernet G, Sala-Rovira M, Maeder M et al (1990) Basic nuclear proteins of the histone-less eukaryote Crypthecodinium cohnii (Pyrrhophyta): two-dimensional electrophoresis and DNA-binding properties. Biochim Biophys Acta 1048:281–289
Waller RF, Jackson CJ (2009) Dinoflagellate mitochondrial genomes: stretching the rules of molecular biology. Bioessays 31:237–245
Watrin E, Legagneux V (2003) Introduction to chromosome dynamics in mitosis. Biol Cell 95:507–513
Wong JTY, New DC, Wong JCW, Hung VKL (2003) Histone-like proteins of the dinoflagellate Crypthecodinium cohnii have homologies to bacterial DNA-binding proteins. Eukaryot Cell 2:646–650
Yoshikawa T, Ishida Y, Uchida A (1996) There are 4 introns in the gene coding the DNA-binding protein HCc of Crypthecodinium cohnii (Dinophyceae). Fish Sci 62:204–209
Zhang H, Lin S (2009) Retrieval of missing spliced leader in dinoflagellates. PLoS One 4:e4129
Zhang Z, Green BR, Cavalier-Smith T (1999) Single gene circles in dinoflagellate chloroplast genomes. Nature 400:155–159
Zhang H, Bhattacharya D, Lin S (2005) Phylogeny of dinoflagellates based on mitochondrial cytochrome b and nuclear small subunit rDNA sequence comparisons. J Phycol 41:411–420
Zhang H, Hou Y, Lin S (2006) Isolation and characterization of proliferating cell nuclear antigen from the dinoflagellate Pfiesteria piscicida. J Eukaryot Microbiol 53:142–150
Zhang H, Hou Y, Miranda L et al (2007) Spliced leader RNA trans-splicing in dinoflagellates. Proc Natl Acad Sci U S A 104:4618–4623
Zingmark R (1970) Sexual reproduction in the dinoflagellate Noctiluca miliaris suriray. J Phycol 6:122–126
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer Japan
About this chapter
Cite this chapter
Fukuda, Y., Suzaki, T. (2015). Unusual Features of Dinokaryon, the Enigmatic Nucleus of Dinoflagellates. In: Ohtsuka, S., Suzaki, T., Horiguchi, T., Suzuki, N., Not, F. (eds) Marine Protists. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55130-0_2
Download citation
DOI: https://doi.org/10.1007/978-4-431-55130-0_2
Publisher Name: Springer, Tokyo
Print ISBN: 978-4-431-55129-4
Online ISBN: 978-4-431-55130-0
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)