Skip to main content

Biology and Paleontology of Coccolithophores (Haptophytes)

  • Chapter
Marine Protists

Abstract

Coccolithophores are marine unicellular haptophytes that possess calcified scales called coccoliths. They are classified primarily on the morphology and crystallography of the coccoliths. This classification is well supported by molecular genetic results; however, a significant complication occurs in that coccolithophores have a haplodiplontic life cycle with asexual reproduction by binary fission in both the diploid and haploid phases and with very different types of coccoliths being produced in the two phases. Coccolithophores have very extensive fossil records, making them an attractive group for study of microevolutionary patterns through combined study of molecular genetics, the morphology of living species and the fossil record. The molecular studies showed that many conventional coccolithophore morpho-species consist of multiple discrete species often only differing from each other in minor morphological features or the size range of coccoliths. Paleontological studies showed that many fossil lineages had evolutionary size-increasing events in their history, and the size ranges of some fossil species are useful as index fossils for dating of marine sediments. Stratigraphic variations of the composition of fossil species and organic compounds (alkenones) produced by the Isochrysidales are useful for reconstruction of sea surface water condition and of sea surface temperature in the geological past. It is possible that ongoing global warming and ocean acidification may affect the distribution of coccolithophores and the composition of genotypes/species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alegret L, Thomas E, Lohmann KC (2012) End-Cretaceous marine mass extinction not caused by productivity collapse. Proc Natl Acad Sci U S A 109(3):728–732

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Andruleit H, Stäger S, Rogalla U, Cepek P (2003) Living coccolithophores in the northern Arabian Sea: ecological tolerances and environmental control. Mar Micropaleontol 49:157–181

    Article  Google Scholar 

  • Andruleit H, Rogalla U, Stäger S (2004) From living communities to fossil assemblages: origin and fate of coccolithophores in the northern Arabian Sea. Micropaleontology 50(Suppl 1):5–21

    Article  Google Scholar 

  • Barke S, Elderfield H (2002) Foraminiferal calcification response to glacial-interglacial changes in atmospheric CO2. Science 297:833–836

    Article  Google Scholar 

  • Baumann K-H, Boeckel B (2013) Spatial distribution of living coccolithophores in the southwestern Gulf of Mexico. J Micropalaeontol 32:123–133

    Article  Google Scholar 

  • Baumann K-H, Cepek M, Kinkel H (1999) Coccolithophores as indicators of ocean water masses, surface water temperature, and paleoproductivity. In: Fischer G, Wefer G (eds) Proxies in paleoceanography. Springer, Berlin/Heidelberg, pp 117–144

    Chapter  Google Scholar 

  • Beaufort L, de Garidel-Thoron T, Mix AC, Pisias NG (2001) ENSO-like forcing on oceanic primary production during the Late Pleistocene. Science 293:2440–2444

    Article  CAS  PubMed  Google Scholar 

  • Beaufort L, Probert I, Td G-T, Bendif EM, Ruiz-Pino D, Metzl N, Goyet C, Buchet N, Coupel P, Grelaud M, Rost B, Rickaby REM, de Vargas C (2011) Sensitivity of coccolithophores to carbonate chemistry and ocean acidification. Nature 476:80–83

    Article  CAS  PubMed  Google Scholar 

  • Bendif E, Probert I, Romac S, Hagino K, de Vargas C (2014) Genetic delineation between and within the widespread coccolithophore morpho-species Emiliania huxleyi and Gephyrocapsa oceanica (Haptophyta). J Phycol 50:140–148

    Article  CAS  Google Scholar 

  • Billard C (1994) Life cycles. In: Green JC, Leadbeater BSC (eds) The haptophyte algae, vol 51, Systematics association special volumes. Clarendon, Oxford, pp 167–186

    Google Scholar 

  • Billard C, Inouye I (2004) What’s new in coccolithophore biology? In: Thierstein HR, Young JR (eds) Coccolithophores – from molecular processes to global impact. Springer, Berlin/Heidelberg, pp 1–30

    Google Scholar 

  • Bittner L, Gobet A, Audic S, Romac S, Egge ES, Santini S, Ogata H, Probert I, Edvardsen B, de Vargas C (2013) Diversity patterns of uncultured Haptophytes unravelled by pyrosequencing in Naples Bay. Mol Ecol 22:87–101

    Article  CAS  PubMed  Google Scholar 

  • Blackburn SI, Cresswell G (1993) A coccolithophorid bloom in Jervis Bay, Australia. Aust J Mar Freshwater Res 44:253–260

    Article  CAS  Google Scholar 

  • Boeckel B, Baumann K-H (2008) Vertical and lateral variations in coccolithophore community structure across the subtropical frontal zone in the South Atlantic Ocean. Mar Micropaleontol 67:255–273

    Article  Google Scholar 

  • Bollmann J (1997) Morphology and biogeography of Gephyrocapsa coccoliths in Holocene sediments. Mar Micropaleontol 29:319–350

    Article  Google Scholar 

  • Bown PR (1998) Calcareous nannofossil biostratigraphy. Chapman & Hall, London, pp 1–315

    Book  Google Scholar 

  • Bown PR (2005) Selective calcareous nannoplankton survivorship at the Cretaceous-Tertiary boundary. Geology 33(8):653–656

    Article  Google Scholar 

  • Bown PR, Lees JA, Young JR (2004) Calcareous nannoplankton evolution and diversity through time. In: Thierstein HR, Young JR (eds) Coccolithophores – from molecular processes to global impact. Springer, Berlin/Heidelberg, pp 481–508

    Google Scholar 

  • Burki F, Okamoto N, Pombert JF, Keeling PJ (2012) The evolutionary history of haptophytes and cryptophytes: phylogenomic evidence for separate origins. Proc Biol Sci 279(1736):2246–2254

    Article  PubMed Central  PubMed  Google Scholar 

  • Chiyonobu S, Mori Y, Oda M (2012) Reconstruction of paleoceanographic conditions in the northwestern Pacific Ocean over the last 500 kyr based on calcareous nannofossil and planktic foraminiferal assemblages. Mar Micropaleontol 96–97:29–37

    Article  Google Scholar 

  • Colmenero-Hidalgo E, Flores JA, Sierro FJ (2002) Biometry of Emiliania huxleyi and its biostratigraphic significance in the Eastern North Atlantic Ocean and Western Mediterranean Sea in the last 20000 years. Mar Micropaleontol 46(3–4):247–263

    Article  Google Scholar 

  • Cook SS, Whittock L, Wright SW, Hallegraeff GM (2011) Photosynthetic pigment and genetic differences between two southern ocean morphotypes of Emiliania huxleyi (Haptophyta). J Phycol 47:615–626

    Article  CAS  Google Scholar 

  • Cros L, Fortuño J-M (2002) Atlas of northwestern Mediterranean coccolithophores. Scientia Marina 66:186

    Article  Google Scholar 

  • Cubillos JC, Wright SW, Nash G, de Salas MF, Griffiths B, Tilbook B, Poisson P, Hallegraeff GM (2007) Calcification morphotypes of the coccolithophorid Emiliania huxleyi in the Southern Ocean: changes in 2001 to 2006 compared to historical data. Mar Ecol Prog Ser 348(1):47–54

    Article  Google Scholar 

  • de Kaenel E, Siesser WG, Murat A (1999) Pleistocene calcareous nannofossil biostratigraphy and the western mediterranean sapropels, sites 974 to 977 and 979. In: Zahn R, Comas MC, Klaus A (eds) Proceedings of the Ocean Drilling Program, scientific results, vol 161. College Station, pp 159–183

    Google Scholar 

  • de Vargas C, Aubry M-P, Probert I, Young JR (2007) Origin and evolution of coccolithophores: from coastal hunters to oceanic farmers. In: Falkowski PG, Knoll AH (eds) Evolution of primary producers in the Sea. Elsevier, Boston, pp 251–285

    Chapter  Google Scholar 

  • Drescher B, Dillaman RM, Taylor AR (2012) Coccolithogenesis In Scyphosphaera apsteinii (Prymnesiophyceae). J Phycol 48(6):1343–1361

    Article  Google Scholar 

  • Edvardsen B, Wenche E, Throndsen J, Sáez AG, Probert I, Medlin LK (2011) Ribosomal DNA phylogenies and a morphological revision provide the basis for a revised taxonomy of the Prymnesiales (Haptophyta). Eur J Phycol 46(3):202–228

    Article  Google Scholar 

  • Farrimond P, Eglinton G, Brassell SC (1986) Alkenones in Cretaceous black shales, Blake-Bahama Basin, western North Atlantic. Org Geochem 10:897–903

    Article  CAS  Google Scholar 

  • Findlay CS, Giraudeau J (2000) Extant calcareous nannoplankton in the Australian sector of the Southern Ocean (austral summers 1994 and 1995). Mar Micropaleontol 40(4):417–439

    Article  Google Scholar 

  • Fischer G, Karakas G (2009) Sinking rates and ballast composition of particles in the Atlantic Ocean: implications for the organic carbon fluxes to the deep ocean. Biogeosciences 6:85–102

    Article  CAS  Google Scholar 

  • Frada M, Percopo I, Young JR, Zingone A, de Vargas C, Probert I (2009) First observations of heterococcolithophore-holococcolithophore life cycle combinations in the family Pontosphaeraceae (Calcihaptophycideae, Haptophyta). Mar Micropaleontol 71(1):20–27

    Article  Google Scholar 

  • Fujiwara S, Tsuzuki M, Kawachi M, Minaka N, Inouye I (2001) Molecular phylogeny of the haptophyta based on the rbcL gene and ssequence variation in the spacer region of the RUBISCO operon. J Phycol 37:121–129

    Article  CAS  Google Scholar 

  • Gattuso J-P, Frankignoulle M, Bourge I, Romaine S, Buddemeier RW (1998) Effect of calcium carbonate saturation of seawater on coral calcification. Global Planet Change 18:37–46

    Article  Google Scholar 

  • Geisen M, Billard C, Broerse ATC, Cros L, Probert I, Young JR (2002) Life-cycle associations involving pairs of holococcolithophorid species: intraspecific variation or cryptic speciation? Eur J Phycol 37:531–550

    Article  Google Scholar 

  • Geisen M, Langer G, Young JR (2004) Coccolithophore calcification response to marine pCO2 – where reality confronts models. J Nannoplankton Res 26(2):45

    Google Scholar 

  • Green JC, Hori T (1994) Flagella and flagellar roots. In: Green JC, Leadbeater BSC (eds) The haptophyte algae, vol 51, Systematics association special volume. Clarendon, Oxford, pp 47–71

    Google Scholar 

  • Green JC, Jordan RW (1994) Systematic history and taxonomy. In: Green JC, Leadbeater BSC (eds) The haptophyte algae, vol 51, Systematics association special volumes. Clarendon, Oxford, pp 1–21

    Google Scholar 

  • Hagino K, Okada H (2004) Floral response of coccolithophores to progressive oligotrophication in the south equatorial current, Pacific Ocean. In: Shiyomi M, Kawahata H, Koizumi H, Tsuda A, Awaya Y (eds) Global environmental change in the ocean and on land. Terra-Pub, Tokyo, pp 121–132

    Google Scholar 

  • Hagino K, Okada H, Matsuoka H (2000) Spatial dynamics of coccolithophore assemblages in the Equatorial Western-Central Pacific Ocean. Mar Micropaleontol 39:53–72

    Article  Google Scholar 

  • Hagino K, Okada H, Matsuoka H (2005) Coccolithophore assemblages and morphotypes of Emiliania huxleyi in the boundary zone between the cold Oyashio and warm Kuroshio currents off the coast of Japan. Mar Micropaleontol 55:19–47

    Article  Google Scholar 

  • Hagino K, Takano Y, Horiguchi T (2009) Pseudo-cryptic speciation in Braarudosphaera bigelowii (Gran and Braarud) Deflandre. Mar Micropaleontol 72:210–221

    Article  Google Scholar 

  • Hagino K, Bendif EM, Young JR, Kogame K, Probert I, Takano Y, Horiguchi T, de Vargas C, Okada H (2011) New evidence for morphological and genetic variation in the cosmopolitan coccolithophore Emiliania huxleyi (Prymnesiophyceae) from the Cox1b-ATP4 genes. J Phycol 47:1164–1176

    Article  CAS  Google Scholar 

  • Hagino K, Onuma R, Kawachi M, Horiguchi T (2013) Discovery of an endosymbiotic nitrogen-fixing cyanobacterium UCYN-A in Braarudosphaera bigelowii (Prymnesiophyceae). PLoS One 8(12), e81749

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hine N, Weaver PPE (1998) Quaternary. In: Bown PR (ed) Calcareous nannofossil biostratigraphy. Chapman & Hall, London, pp 266–283

    Chapter  Google Scholar 

  • Honjo S (1976) Coccoliths: production, transportation and sedimentation. Mar Micropaleontol 1:65–79

    Article  Google Scholar 

  • Houdan A, Billard C, Marie D, Not F, Sáez AG, Young JR, Probert I (2004) Holococcolithophore-heterococcolithophore (Haptophyta) life cycles: flow cytometric analysis of relative ploidy levels. Systematics and Biodiversity 1(4):453–465

    Article  Google Scholar 

  • Iglesias-Rodríguez MD, Halloran PR, Rickaby REM, Hall IR, Colmenero-Hidalgo E, Gittins JR, Green DRH, Tyrrell T, Gibbs SJ, Pv D, Rehm E, Armbrust EV, Boessenkool KP (2008) Phytoplankton calcification in a high-CO2 world. Science 320:336–340

    Article  PubMed  CAS  Google Scholar 

  • Inouye I, Kawachi M (1994) The haptonema. In: Green JC, Leadbeater BSC (eds) The haptophyte algae, vol 51, Systematics association special volumes. Clarendon, Oxford, pp 73–89

    Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Kai M, Hara T, Aoyama H, Kuroda N (1999) A massive coccolithophorid bloom observed in Mikawa Bay, Japan. J Oceanography 55:395–406

    Article  Google Scholar 

  • Kameo K, Sato T (2000) Biogeography of Neogene calcareous nannofossils in the Caribbean and the eastern equatorial Pacific—floral response to the emergence of the Isthmus of Panama. Mar Micropaleontol 39:201–218

    Article  Google Scholar 

  • Kamptner E (1941) Die Coccolithineen der Südwestküste von Istrien. Annln naturh Mus Wien 51:54–149

    Google Scholar 

  • Kawachi M, Inouye I, Maeda O, Chihara M (1991) The haptonema as a foo-capturing device: observations on Chrysochromulina hirta (Prymnesiophyceae). Phycologia 30:563–573

    Article  Google Scholar 

  • Kleijne A (1993) Morphology, taxonomy and distribution of extant coccolithophorids (Calcareous nannoplankton). Drukkerij FEBO B.V., Katwijk, pp 1–321

    Google Scholar 

  • Knappertsbusch M (1997) Morphologic variability of the coccolithophorid Calcidiscus leptoporus in the plankton, surface sediments and from the early Pleistocene. Mar Micropaleontol 30:293–317

    Article  Google Scholar 

  • Langer G, Geisen M, Baumann K-H, Klas J, Riebesell U, Thoms S, Young JR (2006) Species-specific responses of calcifying algae to changing seawater carbonate chemistry. Geochem Geophys Geosystems 7:1–12

    Article  CAS  Google Scholar 

  • Langer G, Nehrke G, Probert I, Ly J, Ziveri P (2009) Strain-specific responses of Emiliania huxleyi to changing seawater carbonate chemistry. Biogeosciences 6:2637–2646

    Article  CAS  Google Scholar 

  • Leadbeater BSC (1994) Cell coverings. In: Green J, Leadbeater B (eds) The haptophyte algae, vol 51, Systematics association special volumes. Clarendon, Oxford, pp 23–46

    Google Scholar 

  • Lenning KV, Probert I, Latasa M, Estrada M, Young JR (2004) Pigment diversity of coccolithophores in relation to taxonomy, phylogeny and ecological preferences. In: Thierstein HR, Young JR (eds) Coccolithophores – from molecular processes to global impact. Springer, Berlin/Heidelberg, pp 51–73

    Google Scholar 

  • Liu H, Probert I, Uitz J, Claustre H, Aris-Brosou S, Frada M, Not F, Cd V (2009) Extreme diversity in noncalcifying haptophytes explains a major pigment paradox in open oceans. Proc Natl Acad Sci U S A 106:12803–12808

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lohmann H (1902) Die Coccolithophoridae, eine Monographie der Coccolithen bildenden Flagellaten, zugleich ein Beitrag zur Kenntnis des Mittelmeerauftriebs. Arch Protistenkd 1:89–165

    Google Scholar 

  • MacLeod N, Rawson PF, Forey PL, Banner FT, Boudagher-Fadel MK, Bown PR, Burnett JA, Chambers P, Culver S, Evans SE, Jeffrey C, Kaminski MA, Lord AR, Milner AR, Milner AC, Morris N, Owen E, Rosen BR, Smith AB, Taylor PD, Urquhart E, Young JR (1997) The Cretaceous-tertiary biotic transition. J Geol Soc London 1254(265–293)

    Google Scholar 

  • Manton I, Oates K (1980) Polycrater galapagensis gen. et sp. nov., a putative coccolithophorid from the Galapagos Islands with an unusual aragonitic periplast. Br phycol J 15:95–103

    Article  Google Scholar 

  • Matsuoka H, Okada H (1990) Time-progressive morphometric changes of the genus Gephyrocapsa in the quaternary sequence of the tropical Indian Ocean, Site 709. In: Duncan RA, Backman J, Peterson LC (eds) Proceedings of the Ocean Drilling Program. Scientific results, vol 115. College Station, pp 255–270

    Google Scholar 

  • McIntyre A, Bé AWH (1967) Modern Coccolithophoridae of the Atlantic Ocean – I. Placoliths and Cyrtholiths. Deep Sea Res 14:561–597

    Google Scholar 

  • Medlin LK, Sáez AG, Young JR (2008) A molecular clock for coccolithophores and implications for selectivity of phytoplankton extinctions across the K/T boundary. Mar Micropaleontol 67(1–2):69–86

    Article  Google Scholar 

  • Mohan R, Mergulhao LP, Guptha MVS, Rajakumar A, Thamban M, AnilKumar N, Sudhakar M, Ravindra R (2008) Ecology of coccolithophores in the Indian sector of the Southern Ocean. Mar Micropaleontol 67:30–45

    Article  Google Scholar 

  • Molfino B, McIntyre A (1990) Precessional forcing of nutricline dynamics in the equatorial Atlantic. Science 249:766–769

    Article  CAS  PubMed  Google Scholar 

  • Murata A, Takizawa T (2002) Impact of a coccolithophorid bloom on the CO2 system in surface waters of the eastern Bering Sea shelf. Geophys Res Lett 29(11):1547

    Article  Google Scholar 

  • Nishida S (1986) Nannoplankton flora in the Southern Ocean, with special reference to siliceous varieties. Mem Natl Inst Polar Res Spec issue 40:56–68

    Google Scholar 

  • Ohno S, Kadono T, Kurosawa K, Hamura T, Sakaiya T, Shigemori K, Hironaka Y, Sano T, TakeshiWatari OK, Matsui T, Sugita S (2014) Production of sulphate-rich vapour during the Chicxulub impact and implications for ocean acidification. Nat Geosci 7:279–282

    Article  CAS  Google Scholar 

  • Okada H, Honjo S (1973) The distribution of oceanic coccolithophorids in the Pacific. Deep Sea Res 20:355–374

    Google Scholar 

  • Okada H, Honjo S (1975) Distribution of coccolithophores in marginal seas along the western Pacific Ocean and in the Red Sea. Mar Biol Berlin 31(271–285)

    Google Scholar 

  • Okada H, Matsuoka M (1996) Lower-photic nannoflora as an indicator of the late Quaternary monsoonal palaeo-record in the tropical Indian Ocean. In: Moguilevsky A, Whatley R (eds) Microfossils and oceanic environments. Aberystwyth Press, Aberystwyth, pp 231–245

    Google Scholar 

  • Okada H, McIntyre A (1979) Seasonal distribution of modern coccolithophores in the Western North Atlantic Ocean. Mar Biol Berlin 54:319–328

    Article  Google Scholar 

  • Parke M, Adams I (1960) The motile (Crystallolithus hyalinus Gaarder & Markali) and non-motile phases in the life history of Coccolithus pelagicus (Wallich) Schiller. J Mar Biol Ass U K 39:263–274

    Article  Google Scholar 

  • Pospichal JJ (1996) Calcareous nannoplankton mass extinction at the cretaceous/tertiary boundary: an update. In: Ryder G, Fastovsky D, Gartner S (eds) The cretaceous-tertiary event and other catastrophes in earth history, vol 307. Geological Society of America, Boulder, pp 335–360

    Google Scholar 

  • Prahl FG, Wakeham SG (1987) Calibration of unsaturation patterns in long-chain ketone compositions for palaeotemperature assessment. Nature 330:367–369

    Article  CAS  Google Scholar 

  • Raffi I, Backman J, Fornaciari E, Palike H, Rio D, Lourens LJ, Hilgen FJ (2006) A review of calcareous nannofossil astrobiochronology encompassing the past 25 million years. Quaternary Sci Rev 25:3113–3137

    Article  Google Scholar 

  • Read BA, Kegel J, Klute MJ, Kuo A, Lefebvre SC, Maumus F, Mayer C, Miller J, Monier A, Salamov A, Young J, Aguilar M, Claverie J-M, Frickenhaus S, Gonzalez K, Herman EK, Lin Y-C, Napier J, Ogata H, Sarno AF, Shmutz J, Schroeder D, deVargas C, Verret F, Dassow PV, Valentin K, Peer YD, Wheeler G, Consortium EhA, Dacks JB, Delwiche CF, Dyhrman ST, Glo¨ckner G, John U, Richards T, Worden AZ, Zhang X, Grigoriev IV (2013) Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature 499:209–213

    Google Scholar 

  • Riebesell U, Zondervan I, Rost B, Tortell PD, Zeebe RE, Morel FMM (2000) Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407:364–367

    Article  CAS  PubMed  Google Scholar 

  • Rost B, Riebesell U (2004) Coccolithophore calcification and the biological pump: response to environmental changes. In: Thierstein HR, Young JR (eds) Coccolithophores–from molecular processes to global impact. Springer, Berlin/Heidelberg, pp 99–125

    Google Scholar 

  • Rowson JD, Leadbeater BSC, Green JC (1986) Calcium carbonate deposition in the motile (Crystallolithus) phase of Coccolithus pelagicus (Prymnesiophyceae). Br phycol J 21:359–370

    Article  Google Scholar 

  • Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng T-H, Kozyr A, Ono T, Rios AF (2004) The oceanic sink for anthropogenic CO2. Nature 305:367–371

    CAS  Google Scholar 

  • Sachs JP, Schneider RR, Eglinton TI, Freeman KH, Ganssen G, McManus JF, Oppo DW (2000) Alkenones as paleoceanographic proxies. Geochem Geophys Geosyst 1:2000GC000059

    Article  Google Scholar 

  • Sáez AG, Probert I, Geisen M, Quinn P, Young JR, Medlin LK (2003) Pseudo-cryptic speciation in coccolithophores. Proc Natl Acad Sci U S A 100(12):7163–7168

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sáez AG, Probert I, Young JR, Edvardsen B, Wenche E, Medlin LK (2004) A review of the phylogeny of the Haptophyta. In: Thierstein HR, Young JR (eds) Coccolithophores – from molecular processes to global impact. Springer, Berlin/Heidelberg/New York, pp 251–270

    Google Scholar 

  • Schroeder DC, Biggi GF, Hall M, Davy J, Martinez J, Richardson AJ, Malin G, Wilson WH (2005) A genetic marker to separate Emiliania huxleyi (Prymnesiophyceae) morphotypes. J Phycol 41:874–879

    Article  CAS  Google Scholar 

  • Schulte P, Alegret L, Arenillas I, Arz JA, Barton PJ, Bown PR, Bralower TJ, Christeson GL, Claeys P, Cockell CS, S CG, Deutsch A, Goldin TJ, Goto K, Grajales-Nishimura JM, Grieve RAF, Gulick SPS, Johnson KR, Kiessling W, Koeberl C, Kring DA, MacLeod KG, Matsui T, Melosh J, Montanari A, Morgan JV, Neal CR, J. ND, Norris RD, Pierazzo E, Ravizza G, Rebolledo-Vieyra M, Reimold WU, Robin E, Salge T, Speijer RP, Sweet AR, Urrutia-Fucugauchi J, Vajda V, Whalen MT, Willumsen PS (2010) The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327:1214–1218

    Google Scholar 

  • Steinmetz JC (1994) Sedimentation of coccolithophores. In: Winter A, Siesser WG (eds) Coccolithophores. Cambridge University Press, Cambridge, pp 179–198

    Google Scholar 

  • Takahashi K, Okada H (2000) Environmental control on the biogeography of modern coccolithophores in the southeastern Indian Ocean offshore of Western Australia. Mar Micropaleontol 39(1–4):73–86

    Article  Google Scholar 

  • Takano Y, Hagino K, Tanaka Y, Horiguchi T, Okada H (2006) Phylogenetic affinities of an enigmatic nannoplankton, Braarudosphaera bigelowii based on the SSU rDNA sequences. Mar Micropaleontol 60:145–156

    Article  Google Scholar 

  • Ternois Y, Kawamura K, Ohkouchi N, Keigwin L (2000) Alkenone sea surface temperature in the Okhotsk Sea for the last 15 kyr. Geochemical Journal 34:283–293

    Article  CAS  Google Scholar 

  • Thomsen HA, Ostergaard JB, Hansen LE (1991) Heteromorphic life histories in Arctic coccolithophorids (Prymnesiophyceae). J Phycol 27:634–642

    Article  Google Scholar 

  • Tyrrell T, Merico A (2004) Emiliania huxleyi: bloom observations and the conditions that induce them. In: Thierstein HR, Young JR (eds) Coccolithophores: from molecular processes to global impact. Springer, Berlin/Heidelberg, pp 75–97

    Chapter  Google Scholar 

  • Unrein F, Gasol JM, Not F, Forn I, Massana R (2014) Mixotrophic haptophytes are key bacterial grazers in oligotrophic coastal waters. ISME J 8:164–176

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wallich GC (1877) Observations on the coccosphere. Ann Mag nat Hist 19:342–350

    Article  Google Scholar 

  • Westbroek P, Young JR, Linschooten K (1989) Coccolith production (Biomineralization) in the marine alga Emiliania huxleyi. J Protozool 36(4):368–373

    Article  Google Scholar 

  • Winter A, Siesser WG (1994) Atlas of living coccolithophores. In: Winter A, Siesser WG (eds) Coccolithophores. Cambridge University Press, Cambridge, pp 107–159

    Google Scholar 

  • Winter A, Jordan RW, Roth PH (1994) Biogeography of living coccolithophores in ocean waters. In: Winter A, Siesser WG (eds) Coccolithophores. Cambridge University Press, Cambridge, pp 161–177

    Google Scholar 

  • Winter A, Henderiks J, Beaufort L, Rickaby REM, Brown CW (2013) Poleward expansion of the coccolithophore Emiliania huxleyi. J Plankton Res 27:1–10

    Google Scholar 

  • Yoshida M, Noël M-H, Nakayama T, Naganuma T, Inouye I (2006) A Haptophyte bearing siliceous scales: Ultrastructure and phylogenetic position of Hyalolithus neolepis gen. et sp. nov. (Prymnesiophyceae, Haptophyta). Protist 157(2):213–234

    Article  CAS  PubMed  Google Scholar 

  • Young JR (1998) Neogene. In: Bown PR (ed) Calcareous nannofossil biostratigraphy, British micropalaeontological society publications series. Chapman & Hall, London, pp 225–265

    Chapter  Google Scholar 

  • Young JR, Westbroek P (1991) Genotypic variation in the coccolithophorid species Emiliania huxleyi. Mar Micropaleontol 18:5–23

    Article  Google Scholar 

  • Young JR, Davis SA, Bown PR, Mann S (1999) Coccolith ultrastructure and biomineralisation. J Struct Biol 126:195–215

    Article  CAS  PubMed  Google Scholar 

  • Young JR, Geisen M, Cros L, Kleijne A, Probert I, Ostergaard JB (2003) A guide to extant coccolithophore taxonomy. J Nannoplankton Res, Special Issue 1:1–132

    Google Scholar 

  • Young JR, Geisen M, Probert I (2005) A review of selected aspects of coccolithophore biology with implications for palaeobiodiversity estimation. Micropaleontol 51(4):267–288

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to H. Matsuoka of Kochi University for providing original measurement data obtained by Matsuoka and Okada (1990) for Fig. 12.5 in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoko Hagino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Hagino, K., Young, J.R. (2015). Biology and Paleontology of Coccolithophores (Haptophytes). In: Ohtsuka, S., Suzaki, T., Horiguchi, T., Suzuki, N., Not, F. (eds) Marine Protists. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55130-0_12

Download citation

Publish with us

Policies and ethics