Skip to main content

Protistan Diversity in Environmental Molecular Surveys

  • Chapter

Abstract

Marine protists include a heterogeneous collection of phototrophic and heterotrophic unicells covering a wide cell size range and belonging to virtually all eukaryotic lineages. They have been identified by microscopy, which allows a reasonable level of resolution for the larger specimens but is clearly insufficient for the smallest ones. Moreover, as occurs with their prokaryotic counterparts, a large majority of marine protists are uncultivable. Molecular tools have revolutionized field studies of protists’ diversity, allowing exhaustive species inventories especially when combined with high-throughput sequencing technologies. These surveys have shown that natural assemblages are very diverse, including novel phylogenetic lineages that had remained uncharacterized despite their evident ecological significance. The extent of diversity and novelty is largest within the assemblage of the smallest protists, the picoeukaryotes. The information gathered by sequencing phylogenetic marker genes has been combined with an array of complementary molecular methods such as fingerprinting tools to study diversity changes along spatial and temporal gradients, fluorescence in situ hybridization (FISH) to put a face on the novel lineages and perform specific cell counts, and metagenomics to explore ecological adaptations on the basis of the genetic potential. This chapter presents an overview of the molecular approaches currently applied to gain knowledge on the diversity and function of protists in the environment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adl SM, Simpson AGB, Lane CE et al (2012) The revised classification of eukaryotes. J Eukaryot Microbiol 59:429–493

    Article  PubMed Central  PubMed  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    PubMed Central  CAS  PubMed  Google Scholar 

  • Amato A, Kooistra WHCF, Ghiron JHL et al (2007) Reproductive isolation among sympatric cryptic species in marine diatoms. Protist 158:193–207

    Article  CAS  PubMed  Google Scholar 

  • Arndt H, Dietrich D, Auer B et al (2000) Functional diversity of heterotrophic flagellates in aquatic ecosystems. In: Leadbeater BSC, Green JC (eds) The flagellates: unity, diversity and evolution. Taylor & Francis, London, pp 240–268

    Google Scholar 

  • Baldauf SL (2003) The deep roots of eukaryotes. Science 300:1703–1706

    Article  CAS  PubMed  Google Scholar 

  • Béja O, Aravind L, Koonin EV et al (2000) Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289:1902–1906

    Article  PubMed  Google Scholar 

  • Bigg GR, Jickells TD, Liss PD et al (2003) The role of oceans in climate. Int J Climatol 23:1127–1259

    Article  Google Scholar 

  • Burki F, Okamoto N, Pombert J-F et al (2012) The evolutionary history of haptophytes and cryptophytes: phylogenomic evidence for separate origins. Proc R Soc B 279:2246–2254

    Article  PubMed Central  PubMed  Google Scholar 

  • Calbet A, Landry MR (2004) Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnol Oceanogr 49:51–57

    Article  CAS  Google Scholar 

  • Caron DA, Countway PD, Jones AC et al (2012) Marine protistan diversity. Ann Rev Mar Sci 4:467–493

    Article  PubMed  Google Scholar 

  • Casteleyn G, Leliaert F, Backeljau T et al (2010) Limits to gene flow in a cosmopolitan marine planktonic diatom. Proc Natl Acad Sci U S A 107:12952–12957

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cavalier-Smith T, Scoble JM (2013) Phylogeny of Heterokonta: Incisomonas marina, a uniciliate gliding opalozoan related to Solenicola (Nanomonadea), and evidence that Actinophryida evolved from raphidophytes. Eur J Protistol 49:328–353

    Article  PubMed  Google Scholar 

  • Chambouvet A, Morin P, Marie D et al (2008) Control of toxic marine dinoflagellate blooms by serial parasitic killers. Science 322:1254–1257

    Article  CAS  PubMed  Google Scholar 

  • Coats DW, Park MG (2002) Parasitism of photosynthetic dinoflagellates by three strains of Amoebophrya (Dinophyta): parasite survival, infectivity, generation time, and host specificity. J Phycol 38:520–528

    Article  Google Scholar 

  • Countway PD, Gast RJ, Savai P et al (2005) Protistan diversity estimates based on 18S rDNA from seawater incubations in the Western North Atlantic. J Eukaryot Microbiol 52:95–106

    Article  CAS  PubMed  Google Scholar 

  • Cuvelier M, Ortiz A, Kim E et al (2008) Widespread distribution of a unique marine protistan lineage. Environ Microbiol 10:1621–1634

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • del Campo J, Massana R (2011) Emerging diversity within chrysophytes, choanoflagellates and bicosoecids based on molecular surveys. Protist 162:435–448

    Article  PubMed  Google Scholar 

  • del Campo J, Balagué V, Forn I et al (2013) Culturing bias in marine heterotrophic flagellates analyzed through seawater enrichment incubations. Microb Ecol 66:489–499

    Article  CAS  PubMed  Google Scholar 

  • DeLong EF, Karl DM (2005) Genomic perspectives in microbial oceanography. Nature 437:336–342

    Article  CAS  PubMed  Google Scholar 

  • Díez B, Pedrós-Alió C, Massana R (2001) Study of genetic diversity of eukaryotic picoplankton in different oceanic regions by small-subunit rRNA gene cloning and sequencing. Appl Environ Microbiol 67:2932–2941

    Article  PubMed Central  PubMed  Google Scholar 

  • Díez B, Massana R et al (2004) Distribution of eukaryotic picoplankton assemblages across hydrographic fronts in the Southern Ocean, studied by denaturing gradient gel electrophoresis. Limnol Oceanogr 49:1022–1034

    Article  Google Scholar 

  • Field CB, Behrenfeld MJ, Randerson JT et al (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240

    Article  CAS  PubMed  Google Scholar 

  • Fromin N, Hamelin J, Tarnawski S et al (2002) Statistical analysis of denaturing gel electrophoresis (DGE) fingerprinting patterns. Environ Microbiol 4:634–643

    Article  CAS  PubMed  Google Scholar 

  • Giovannoni SJ, Britschgi TB, Moyer CL et al (1990) Genetic diversity in Sargasso Sea bacterioplankton. Nature 345:60–63

    Article  CAS  PubMed  Google Scholar 

  • Gong J, Dong J, Liu X et al (2013) Extremely high copy numbers and polymorphisms of the rDNA operon estimated from single cell analysis of oligotrich and peritrich ciliates. Protist 164:369–379

    Article  CAS  PubMed  Google Scholar 

  • Guillou L, Viprey M, Chambouvet A et al (2008) Widespread occurrence and genetic diversity of marine parasitoids belonging to Syndiniales (Alveolata). Environ Microbiol 10:3349–3365

    Article  CAS  PubMed  Google Scholar 

  • Guillou L, Bachar D, Audic S et al (2013) The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res 41:D597–D604

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Harada A, Ohtsuka S, Horiguchi T (2007) Species of the parasitic genus Duboscquella are members of the enigmatic marine alveolate group I. Protist 158:337–347

    Article  CAS  PubMed  Google Scholar 

  • Jardillier L, Zubkov MV, Pearman J et al (2010) Significant CO2 fixation by small prymnesiophytes in the subtropical and tropical northeast Atlantic Ocean. ISME J 4:1180–1192

    Article  CAS  PubMed  Google Scholar 

  • Johnson PW, Sieburth JM (1982) In situ morphology and occurrence of eucaryotic phototrophs of bacterial size in the picoplankton of estuarine and oceanic waters. J Phycol 18:318–327

    Article  Google Scholar 

  • Kim DY, Countway PD, Jones AC et al (2014) Monthly to interannual variability of microbial eukaryotic assemblages at four depths in the eastern North Pacific. ISME J 8:515–530

    Article  PubMed Central  PubMed  Google Scholar 

  • Kunin V, Engelbrektson A, Ochman H et al (2010) Wrinkles in the rare biosphere: pyrosequencing errors lead to artificial inflation of diversity estimates. Environ Microbiol 12:118–123

    Article  CAS  PubMed  Google Scholar 

  • Litchman E, Klausmeier CA (2008) Trait-based community ecology of phytoplankton. Annu Rev Ecol Evol Syst 39:615–639

    Article  Google Scholar 

  • Logares R, Audic S, Santini S et al (2012) Diversity patterns and activity of uncultured marine heterotrophic flagellates unveiled with pyrosequencing. ISME J 6:1823–1833

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Logares R, Audic S, Bass D et al (2014) Patterns of rare and abundant marine microbial eukaryotes. Curr Biol 24:813–821

    Article  CAS  PubMed  Google Scholar 

  • López-García P, Rodríguez-Valera F, Pedrós-Alió C et al (2001) Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409:603–607

    Article  PubMed  Google Scholar 

  • Maloy S, Schaechter M (2006) The era of microbiology: a golden phoenix. Int Microbiol 9:1–7

    CAS  PubMed  Google Scholar 

  • Mann DG (1999) The species concept in diatoms. Phycologia 38:437–495

    Article  Google Scholar 

  • Margulies M, Egholm M, Altman WE et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    PubMed Central  CAS  PubMed  Google Scholar 

  • Massana R (2011) Eukaryotic picoplankton in surface oceans. Annu Rev Microbiol 65:91–110

    Article  CAS  PubMed  Google Scholar 

  • Massana R, Logares R (2013) Eukaryotic versus prokaryotic marine picoplankton ecology. Environ Microbiol 15:1254–1261

    Article  PubMed  Google Scholar 

  • Massana R, Terrado R, Forn I et al (2006) Distribution and abundance of uncultured heterotrophic flagellates in the world oceans. Environ Microbiol 8:1515–1522

    Article  CAS  PubMed  Google Scholar 

  • Massana R, Unrein F, Rodríguez-Martínez R et al (2009) Grazing rates and functional diversity of uncultured heterotrophic flagellates. ISME J 3:588–596

    Article  CAS  PubMed  Google Scholar 

  • Massana R, del Campo J, Sieracki ME et al (2014) Exploring the uncultured microeukaryotic majority in the oceans: reevaluation of ribogroups within stramenopiles. ISME J 8:854–866

    Article  PubMed Central  PubMed  Google Scholar 

  • Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11:31–46

    Article  CAS  PubMed  Google Scholar 

  • Moon-van der Staay SY, De Wachter R, Vaulot D (2001) Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409:607–610

    Article  CAS  PubMed  Google Scholar 

  • Not F, Latasa M, Marie D et al (2004) A single species, Micromonas pusilla (Prasinophyceae), dominates the eukaryotic picoplankton in the Western English Channel. Appl Environ Microbiol 70:4064–4072

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Not F, Valentin K, Romari K et al (2007) Picobiliphytes: a marine picoplanktonic algal group with unknown affinities to other eukaryotes. Science 315:252–254

    Article  Google Scholar 

  • Not F, Latasa M, Scharek R et al (2008) Protistan assemblages across the Indian Ocean, with a specific emphasis on the picoeukaryotes. Deep Sea Res I 55:1456–1473

    Article  Google Scholar 

  • Not F, del Campo J, Balagué V et al (2009) New insights into the diversity of marine picoeukaryotes. PLoS One 4:e7143

    Article  PubMed Central  PubMed  Google Scholar 

  • O’Malley MA, Simpson AGB, Roger AJ (2013) The other eukaryotes in light of evolutionary protistology. Biol Philos 28:299–330

    Article  Google Scholar 

  • Pawlowski J, Audic S, Adl S et al (2012) CBOL Protist Working Group: barcoding eukaryotic richness beyond animal, plant, and fungal kingdoms. PLoS Biol 10:e1001419

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pedrós-Alió C (2012) The rare bacterial biosphere. Ann Rev Mar Sci 4:449–466

    Article  PubMed  Google Scholar 

  • Potter D, Lajeunesse TC, Saunders GW et al (1997) Convergent evolution masks extensive biodiversity among marine coccoid picoplankton. Biodivers Conserv 6:99–107

    Article  Google Scholar 

  • Rappé MS, Giovannoni SJ (2003) The uncultured microbial majority. Annu Rev Microbiol 57:369–394

    Article  PubMed  Google Scholar 

  • Richards TA, Soanes DM, Jones MDM et al (2011) Horizontal gene transfer facilitated the evolution of plant parasitic mechanisms in the oomycetes. Proc Natl Acad Sci U S A 108:15258–15263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rodrigue S, Malmstrom RR, Berlin AM et al (2009) Whole genome amplification and De novo assembly of single bacterial cells. PLoS One 4:e6864

    Article  PubMed Central  PubMed  Google Scholar 

  • Rusch DB, Halpern AL, Sutton G et al (2007) The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol 5:e77

    Article  PubMed Central  PubMed  Google Scholar 

  • Sala E, Knowlton N (2006) Global marine biodiversity trends. Annu Rev Environ Resour 31:93–122

    Article  Google Scholar 

  • Seenivasan R, Sausen N, Medlin LK et al (2013) Picomonas judraskeda gen. et sp. nov.: the first identified member of the Picozoa phylum nov., a widespread group of picoeukaryotes, formerly known as ‘Picobiliphytes’. PLoS One 8:e59565

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sherr EB, Sherr BF (2002) Significance of predation by protists in aquatic microbial food webs. Anton Leeuw Int J G 81:293–308

    Article  CAS  Google Scholar 

  • Sherr BF, Sherr EB, Caron DA et al (2007) Oceanic protists. Oceanography 20:130–134

    Article  Google Scholar 

  • Siano R, Alves-de-Souza A, Foulon E et al (2010) Distribution and host diversity of Amoebophryidae parasites across oligotrophic waters of the Mediterranean Sea. Biogeosci Discuss 7:7391–7419

    Article  Google Scholar 

  • Smetacek V (2002) The ocean’s veil. Nature 419:565

    Article  CAS  PubMed  Google Scholar 

  • Stepanauskas R (2012) Single cell genomics: an individual look at microbes. Curr Opin Microbiol 15:613–620

    Article  CAS  PubMed  Google Scholar 

  • Stoeck T, Zuendorf A, Breiner H-W et al (2007) A molecular approach to identify active microbes in environmental eukaryote clone libraries. Microb Ecol 53:328–339

    Article  CAS  PubMed  Google Scholar 

  • Stoeck T, Behnke A, Christen R et al (2009) Massively parallel tag sequencing reveals the complexity of anaerobic marine protistan communities. BMC Biol 7:72

    Article  PubMed Central  PubMed  Google Scholar 

  • Timmis JN, Ayliffe MA, Huang CY et al (2004) Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 4:123–135

    Article  Google Scholar 

  • Vaulot D, Eikrem W, Viprey M et al (2008) The diversity of small eukaryotic phytoplankton (≤3 μm) in marine ecosystems. FEMS Microbiol Rev 32:795–820

    Article  CAS  PubMed  Google Scholar 

  • Viprey M, Guillou L, Ferréol M et al (2008) Wide genetic diversity of picoplanktonic green algae (Chloroplastida) in the Mediterranean Sea uncovered by a phylum-biased PCR approach. Environ Microbiol 10:1804–1822

    Article  CAS  PubMed  Google Scholar 

  • Wintzingerode FV, Göbel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21:213–229

    Article  Google Scholar 

  • Woyke T, Xie G, Copeland A et al (2009) Assembling the marine metagenome, one cell at a time. PLoS One 4:e5299

    Article  PubMed Central  PubMed  Google Scholar 

  • Yoon HS, Price DC, Stepanauskas R et al (2011) Single-cell genomics reveals organismal interactions in uncultivated marine protists. Science 322:714–717

    Article  Google Scholar 

  • Zhu F, Massana R, Not F et al (2005) Mapping of picoeukaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiol Ecol 52:79–92

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramon Massana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Massana, R. (2015). Protistan Diversity in Environmental Molecular Surveys. In: Ohtsuka, S., Suzaki, T., Horiguchi, T., Suzuki, N., Not, F. (eds) Marine Protists. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55130-0_1

Download citation

Publish with us

Policies and ethics